A. Bacher and M. Bousquet-mélou, Weakly directed self-avoiding walks, Journal of Combinatorial Theory, Series A, vol.118, issue.8, pp.2365-2391, 2011.
DOI : 10.1016/j.jcta.2011.06.001

URL : https://hal.archives-ouvertes.fr/hal-00526784

C. Banderier, M. Bousquet-mélou, A. Denise, P. Flajolet, D. Gardy et al., Generating functions for generating trees, Discrete Mathematics, vol.246, issue.1-3, pp.1-329, 2002.
DOI : 10.1016/S0012-365X(01)00250-3

URL : https://hal.archives-ouvertes.fr/hal-00003258

N. R. Beaton, M. Bousquet-mélou, J. De-gier, H. Duminil-copin, and A. J. Guttmann, The Critical Fugacity for Surface Adsorption of Self-Avoiding Walks on the Honeycomb Lattice is $${1+\sqrt{2}}$$ 1 + 2, Communications in Mathematical Physics, vol.63, issue.3, 2012.
DOI : 10.1007/s00220-014-1896-1

URL : https://hal.archives-ouvertes.fr/hal-00719647

M. Bousquet-mélou, Families of prudent self-avoiding walks, Journal of Combinatorial Theory, Series A, vol.117, issue.3, pp.313-344, 2010.
DOI : 10.1016/j.jcta.2009.10.001

N. Clisby and I. Jensen, A new transfer-matrix algorithm for exact enumerations: self-avoiding polygons on the square lattice, Journal of Physics A: Mathematical and Theoretical, vol.45, issue.11, pp.45115202-2012
DOI : 10.1088/1751-8113/45/11/115202

E. Duchi, On some classes of prudent walks, FPSAC'05, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00159320

P. Duchon, P. Flajolet, G. Louchard, and G. Schaeffer, Random generation of combinatorial structures: Boltzmann samplers and beyond, Proceedings of the 2011 Winter Simulation Conference (WSC), pp.577-625, 2004.
DOI : 10.1109/WSC.2011.6147745

URL : https://hal.archives-ouvertes.fr/hal-00654267

H. Duminil-copin and S. Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt 2), Annals of Mathematics, vol.175, issue.3, pp.1653-1665, 2012.
DOI : 10.4007/annals.2012.175.3.14

P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009.
DOI : 10.1017/CBO9780511801655

URL : https://hal.archives-ouvertes.fr/inria-00072739

J. M. Hammersley and D. J. Welsh, FURTHER RESULTS ON THE RATE OF CONVERGENCE TO THE CONNECTIVE CONSTANT OF THE HYPERCUBICAL LATTICE, The Quarterly Journal of Mathematics, vol.13, issue.1, pp.108-110, 1962.
DOI : 10.1093/qmath/13.1.108

I. Jensen, Improved lower bounds on the connective constants for two-dimensional self-avoiding walks, Journal of Physics A: Mathematical and General, vol.37, issue.48, pp.11521-11529, 2004.
DOI : 10.1088/0305-4470/37/48/001

H. Kesten, On the Number of Self???Avoiding Walks, Journal of Mathematical Physics, vol.4, issue.7, pp.960-969, 1963.
DOI : 10.1063/1.1704022

D. E. Knuth, Fundamental Algorithms, The Art of Computer Programming, 1997.

N. Madras and G. Slade, The Self-Avoiding Walk. Probability and Its Applications, Birkhäuser, 1993.

B. Nienhuis, Models in Two Dimensions, Physical Review Letters, vol.49, issue.15, pp.1062-1065, 1982.
DOI : 10.1103/PhysRevLett.49.1062

W. J. Orr, Statistical treatment of polymer solutions at infinite dilution, Transactions of the Faraday Society, vol.43, pp.12-27, 1947.
DOI : 10.1039/tf9474300012

H. Prodinger, The kernel method: a collection of examples. Séminaire Lotharingien de Combinatoire, Lothar. Combin, vol.50, pp.19-23, 2003.

E. J. Van-rensburg, Statistical mechanics of directed models of polymers in the square lattice, Journal of Physics A: Mathematical and General, vol.36, issue.15, pp.11-61, 2003.
DOI : 10.1088/0305-4470/36/15/201

E. J. Van-rensburg, T. Prellberg, and A. Rechnitzer, Partially directed paths in a wedge, Journal of Combinatorial Theory, Series A, vol.115, issue.4, pp.623-650, 2008.
DOI : 10.1016/j.jcta.2007.08.003