
HAL Id: hal-01207574
https://inria.hal.science/hal-01207574

Submitted on 1 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A diagrammatic approach to Kronecker squares
Ernesto Vallejo

To cite this version:
Ernesto Vallejo. A diagrammatic approach to Kronecker squares. 26th International Conference
on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States.
pp.477-488, �10.46298/dmtcs.2416�. �hal-01207574�

https://inria.hal.science/hal-01207574
https://hal.archives-ouvertes.fr


FPSAC 2014, Chicago, USA DMTCS proc. AT, 2014, 477–488

A diagrammatic approach to Kronecker
squares (Extended abstract)

Ernesto Vallejo ∗

Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, Morelia, Mexico

Abstract. In this paper we improve a method of Robinson and Taulbee for computing Kronecker coefficients and
show that for any partition ν of d there is a polynomial kν with rational coefficients in variables xC , where C runs
over the set of isomorphism classes of connected skew diagrams of size at most d, such that for all partitions λ of
n, the Kronecker coefficient g(λ, λ, (n − d, ν)) is obtained from kν(xC) substituting each xC by the number of
λ-removable diagrams in C. We present two applications. First we show that for ρk = (k, k − 1, . . . , 2, 1) and
any partition ν of size d there is a piecewise polynomial function sν such that g(ρk, ρk, (|ρk| − d, ν)) = sν(k) for
all k and that there is an interval of the form [c,∞) in which sν is polynomial of degree d with leading coefficient
the number of standard Young tableaux of shape ν. The second application is new stability property for Kronecker
coefficients.

Résumé. Dans ce papier nous améliorons une méthode de Robinson-Taulbee pour calculer les coefficients de Kro-
necker et montrons que pour toute partition ν de d il y a un polynôme kν avec coefficients rationels dans les variables
xC , ou C est dans l’ensemble de classes d’isomorphisme des diagrammes gauches connexes de taille non plus que d,
tel que pour toute partition λ de n, le coefficient de Kronecker g(λ, λ, (n−d, ν)) est obtenu de kν(xC) en substituant
chaque xC pour le nombre de diagrammes λ-removables en C. Nous presentons deux applications. Premièrement
nous montrons que pour ρk = (k, k − 1, . . . , 2, 1) et une partition ν de taille d il y a une fonction polynôme par
morceaux sν tel que pour toute k on a g(ρk, ρk, (|ρk| − d, ν)) = sν(k), et que il y a une interval de la forme [c,∞)

dans lequelle sν est polynôme de degré d avec coefficient principal le nombre de tableaux de Young standard de
forme ν. La seconde application est une nouveau proprieté d’estabilité des coefficients de Kronecker.

Keywords: Kronecker product, Young tableau, Schur function, Kostka number, Littlewood-Richardson rule

1 Introduction
Let χλ be the irreducible character of the symmetric group Sn associated to a partition λ of n. It is one of
the major open problems in the representation theory of the symmetric group in characteristic 0 to find a
combinatorial or geometric description of the multiplicity

g(λ, µ, ν) = 〈χλ ⊗ χµ, χν〉
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of χν in the Kronecker product of χλ⊗χµ of χλ and χµ (here 〈·, ·〉 denotes the inner product of complex
characters). Seventy five years ago Murnaghan [22] published the first paper on the subject. Since then
many people have searched out satisfactory ways for computing the Kronecker coefficients g(λ, µ, ν).
However, very little is still known about the general problem.

In about the last ten years it has been discovered that Kronecker coefficients are related in an important
way to two areas beyond algebraic combinatorics and representation theory. On one side there is the
realization that Kronecker coefficients play an important role in geometric complexity theory [20, 21,
8]. On the other, there is the discovery that Kronecker coefficients are related to the quantum marginal
problem [15, 9]. The techniques developed here could be useful in the problems on Kronecker coefficients
coming from these fields.

Among the few things known, there is a method for computing arbitrary Kronecker coefficients. It was
introduced by Robinson and Taulbee in [30] (see also [29, §3.4]) and reworked by Littlewood in [16]. We
will refer to this method and to any of its variations as the RT method. Its main ingredients are the Jacobi-
Trudi determinant, Frobenius reciprocity and the Littlewood-Richardson rule. Some of its applications
can be found in [32, 36, 40]. Another variation of the RT method appears in [13, §6]. Some applications
of this variation are given in [2, 3, 28].

The version of the RT method from [14, p. 98] suggests how to systematize it by means of the so called
Littlewood-Richardson multitableaux (or simply LR multitableaux), see [10, 36]. This technique, as it is
already apparent from [14], is not only useful for computations: it also lead in [37] to a combinatorial
proof of a stability property for Kronecker coefficients observed by Murnaghan in [22] and to the deter-
mination of a lower bound for stability. LR multitableaux were also used in [1] to construct a one-to-one
correspondence between the set 3-dimensional matrices with integer entries and given 1-marginals and
the set of certain triples of tableaux.

In [36] we observed that the coefficients g(λ, λ, ν) of Kronecker squares could be computed by means
of a graphical approach derived from the RT method and gave explicit formulas for all partitions ν of
depth d(ν) ≤ 3. We include them in Section 7. Some had appeared before in an algebraic but equivalent
form in [12, 32, 40]; some have already been applied in [4, 5, 6, 27]; others may be suitable for future
applications.

In this abstract we show that the phenomenon observed in [36] holds in full generality (Theorem 7.2).
Namely, for each partition ν of size d, there is a polynomial kν(xC) with rational coefficients in variables
xC , where C runs over the set of isomorphism classes of connected skew diagrams of size |C| ≤ d,
such that for each partition λ of n, the Kronecker coefficient g(λ, λ, (n− d, ν)) is obtained from kν(xC)
by evaluating each xC at the number rλ (C) of partitions α of n − d contained in λ such that λ/α is
isomorphic to C. These polynomials do not depend on λ or n. In fact, we also show (Theorem 7.3) that
kν(xC) can be modified to obtain another polynomial k̃ν(tB) in variables tB , where B runs over the set
of isomorphism classes of connected border strips of size |B| ≤ d. Then a similar evaluation of k̃ν(tB)
also yields the corresponding Kronecker coefficient. Theorem 7.2 is derived from Theorem 7.1 which
is an enhancement of the RT method described above that gives a closed combinatorial formula (up to
signs) of Kronecker coefficients. It incorporates the notion of λ-removable diagram and a convenient use
of special border strip tableaux. We will show its utility in Sections 8 and 9. Its ingredients are the RT
method, Eg̃eciog̃lu-Remmel’s combinatorial description of the entries of the inverse Kostka matrix [11],
the new notion of λ-removable diagram introduced in Section 5 and Theorem 5.10. This approach should
be contrasted with Murnaghan’s [22, 23], where for any two partitions λ = (n− a, λ), µ = (n− b, µ) of



A diagrammatic approach to Kronecker squares 479

n a method is given to compute the expansion χλ ⊗ χµ in terms of λ and µ.
Besides we present two applications of the diagrammatic approach developed here. The first is a contri-

bution to the solution of Saxl conjecture studied for the first time in [27]. Let ρk be the staircase partition
(k, k − 1, . . . , 2, 1) and let nk be its size. Saxl conjecture asserts that the Kronecker product χρk ⊗ χρk
contains every irreducible representation of Snk as a component. Here we show what we believe to be
a surprising result: Theorem 8.2, which asserts that for each partition ν of size d there is a piecewise
polynomial function with rational coefficients sν : [0,∞) −→ R such that

g(ρk, ρk, (nk − d, ν)) = sν(k)

for all k such that (nk − d, ν) is a partition. This is the more surprising since the product χρk ⊗ χρk

seems to be the most difficult product of size nk to evaluate (see [16, p. 93]). A further analysis (Theo-
rem 8.4) shows that g(ρk, ρk, (nk − d, ν)) is positive for all but at most 2d values of k. The second result
(Theorem 9.2) shows a new stability property of Kronecker coefficients that is evident once we know
Theorem 7.1. The results presented in this abstract appear in full detail in the paper [39].

The abstract is organized as follows. Sections 2 and 3 contain the definitions, notation and some
known results on partitions, tableaux and characters of the symmetric group used in the abstract. In
Section 4 we relate LR multitableaux to Kronecker coefficients. Theorem 4.3 has not been published
before, but it appears already in a similar form in [36, Corollary 4.3]. In Section 5 we introduce the
notion of λ-removable diagram (Paragraph 5.4). This is the fundamental concept for our diagrammatic
method. In Theorem 5.10 we show that for each isomorphism class D of skew diagrams, the number
rλ (D), of λ-removable diagrams in D, can be expressed as a polynomial with rational coefficients in
variables rλ (C), where C runs over the set of all isomorphism classes of connected skew diagrams of
size |C| ≤ |D|. Section 6 contains a formula that expresses the number lr(λ, λ;π) as a polynomial with
rational coefficients in the numbers rλ (D). Section 7 is the core of the paper. It contains Theorems 7.1,
7.2 and 7.3 already mentioned. We also include two formulas for g(λ, λ, (n− d, ν)) when λ is a rectangle
of size n and ν is either (d) or (1d). In Section 8 we present our contribution to Saxl conjecture, a table
with the polynomials sν for all |ν| ≤ 5 and some conjectures. Finally, Section 9 contains a new stability
property for Kronecker coefficients.

2 Partitions and tableaux
We assume the reader is familiar with the standard results in the combinatorics of Young tableaux (see for
example [18, 31, 33]).

We denote by N the set of positive integers and for any n ∈ N, [n ] = {1, . . . , n}. If λ is a partition,
we denote its size by |λ| and its length by `(λ). If |λ| = n, we also write λ ` n. The depth of λ is
d(λ) = |λ| − λ1. For any composition π = (π1, . . . , πr) denote π = (π2, . . . , πr), |π| = π1,+ · · · + πr
and `(π) = r. If |π| = n, we also write π � n. Thus, for a partition λ one has d(λ) = |λ|. Given two
partitions λ, µ of n we write λ > µ to indicate that λ is greater than or equal to µ in the dominance order
of partitions. The partition λ′ conjugate to λ is obtained by transposing the diagram of λ.

The number of semistandard Young tableaux of shape λ and content π is denoted by Kλπ . Let us
arrange the partitions of n in reverse lexicographic order and form the matrixKn = (Kλµ). It is invertible
over the integers. Let K−1n = (K

(−1)
λµ ) denote its inverse. We now explain the combinatorial description

of the numbers K(−1)
λµ given in [11]. Recall that a border strip is a connected skew diagram that contains
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no subset of the form . A special border strip tableau T of shape µ is an increasing sequence of
partitions

∅ = µ(0) ⊂ µ(1) ⊂ · · · ⊂ µ(c) = µ,

such that each µ(j)/µ(j − 1) is a special border strip of µ, namely a border strip that intersects the first
column of µ. The sign of T is

sgn(T ) =
∏
j

(−1)(ht(µ(j)/µ(j−1))),

where the height ht(µ(j)/µ(j − 1)) is the number of rows of µ(j)/µ(j − 1) minus one. The content,
denoted by γ(T ), is the sequence

|µ(1)/µ(0)|, . . . , |µ(c)/µ(c− 1)|

of sizes of the special border strips arranged in decreasing order. Later it will be convenient to work with a
reordering of γ(T ). Denote by SBST(µ) the set of all special border strip tableaux of shape µ. Eg̃eciog̃lu
and Remmel showed the following

Theorem 2.1 ([11]) For any pair of partitions λ, µ of n one has

K
(−1)
λµ =

∑
T∈SBST(µ), γ(T )=λ

sgn(T ).

The number of Littlewood-Richardson tableaux (or simply LR tableaux) of shape λ/α and content
µ will be denoted by cλ/αµ . More generally, a sequence T = (T1, . . . , Tr) of tableaux is called a LR
multitableau of shape λ/α if there is a sequence of partitions

α = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ ,

such that Ti is LR tableau of shape λ(i)/λ(i − 1), for all i ∈ [ r ]. The content of T is the sequence
(ρ(1), . . . , ρ(r)) , where ρ(i) is the content of Ti; the type of T is the composition (|ρ(1)|, . . . , |ρ(r)|). The
number of LR multitableaux of shape λ/α and content (ρ(1), . . . , ρ(r)) will be denoted by cλ/α(ρ(1),...,ρ(r)).

3 Characters of the symmetric group
We assume the reader is familiar with the standard results in the representation theory of the symmetric
group (see for example [14, 18, 31, 33]).

For any partition λ ` n, denote by χλ the irreducible character of Sn associated to λ, and, for any
composition π = (π1, . . . , πr) of n, by φπ = IndSn

Sπ
(1π) the permutation character associated to π. That

is, φπ is the character induced from the trivial character of the Young subgroup Sπ = Sπ1 × · · · × Sπr to
Sn. Note that if a composition ρ of n is a reordering of π, then φπ = φρ. Also, for a partition α ⊆ λ, let
χλ/α =

∑
ν c

λ/α
ν χν .

Definition 3.1 Let ν = (ν1, . . . , νr) be a partition and T ∈ SBST(ν). Denote by τ(T ) the vector
(t1, . . . , tl) such that t1 is the size of the border strip that contains the square (1, ν1) and t2, . . . , tl are
the sizes of the remaining special border strips arranged in non-increasing order. The vector τ(T ) is not
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a partition in general, but for ν1 big enough it is. It will be useful to work with τ(T ) as the content of T
instead of the usual content γ(T ) defined above, which by definition is always a partition. Let also denote
τ(T ) = (t2, . . . , tl) and e(T ) = |τ(T )|.

Definition 3.2 Let ν = (ν2, . . . , νr) ` d. Denote ν̃ = (ν2, ν2, . . . , νr). Let n ≥ d + ν2. For any
T ∈ SBST(ν̃) we define a new tableau Bn(T ) ∈ SBST((n− d, ν)) as follows. To the border strip in T
of size t1 that contains the square (1, ν2) we add the squares (1, ν2 + 1), . . . , (1, n − d) and form a new
border strip of size t1 +n− d− ν2. Then Bn(T ) is defined as the tableau formed by this new border strip
plus the remaining border strips of T .

Then we have

Lemma 3.3 Let ν be a partition of d. Then for any n ≥ d+ ν2 we have

χ (n−d,ν) =
∑

T∈SBST(ν̃)

sgn(T )φτ(Bn(T )).

4 Littlewood-Richardson multitableaux
Let π = (π1, . . . , πr) be a composition of n. Also let λ, α, µ, β be partitions such that α ⊆ λ, β ⊆ µ,
|λ/α| = n and |µ/β| = n. Define

lr(λ/α, µ/β;π) =
∑

ρ(1)`π1,...,ρ(r)`πr

c
λ/α
(ρ(1),...,ρ(r))c

µ/β
(ρ(1),...,ρ(r)).

This is the number of pairs (S, T ) of LR multitableaux of shape (λ/α, µ/β), same content and type π.
The following lemma is a consequence of Frobenius reciprocity and the Littlewood-Richardson rule.

Lemma 4.1 Let λ, µ, α, β, π be as above. Then

lr(λ/α, µ/β;π) = 〈χλ/α ⊗ χµ/β , φπ〉.

Proposition 4.2 Let ν = (ν2, . . . , νr) be a partition of d and n ≥ d + ν2. Then, for any partitions λ, µ
of n we have

g(λ, µ, (n− d, ν)) =
∑

T∈SBST(ν̃)

sign(T ) lr(λ, µ; τ(Bn(T ))).

Theorem 4.3 Let λ, µ, α, β be partitions such that α ⊆ λ, β ⊆ µ and both λ/α and µ/β have size n. If
ρ, σ are partitions of n and ρ 6 σ, then

lr(λ/α, µ/β; ρ) ≥ lr(λ/α, µ/β;σ).

5 Diagram classes
Definition 5.1 Let ρ, σ be skew diagrams. Denote by ρ = ∪i∈[m ]ρi, σ = ∪j∈[n ]σj their decompositions
into connected components. Then ρ and σ are called isomorphic diagrams if m = n and there is a
permutation π ∈ Sm such that, for each i ∈ [m ], there is a bijective translation fi : ρi −→ σπ(i). The
map f : ρ −→ σ defined, for each x ∈ ρi, by fi(x) is called an isomorphism of diagrams. Clearly f−1 is
also an isomorphism of diagrams.
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Definitions 5.2 Let λ = (λ1, . . . , λp), µ = (µ1, . . . , µq), α = (α1, . . . , αa) and β = (β1, . . . , βb) be
partitions such that α ⊆ λ and β ⊆ µ. If a < p or b < q we let αp+1, . . . , αp and βb+1, · · · , βq be zero.
The disjoint union λ/α t µ/β of λ/α and µ/β is the skew diagram ν/γ where

ν = (λ1 + µ1, . . . , λ1 + µq, λ1, . . . , λp) and γ = (λ1 + β1, . . . , λ1 + βq, α1, . . . , αp).

For example, if λ = (3, 2, 1), α = (12), µ = (4, 2) and β = (1), then the disjoint union λ/α t µ/β is

λ/α t µ/β =

Let σ be a connected skew diagram. For each i ∈ Z, let Di(σ) = {(a, b) ∈ σ | b − a = i} be the
i-th diagonal of σ. If Di(σ) 6= ∅, let xi be the square in Di(σ) whose coordinate sum is bigger than
the coordinate sums of all other squares in Di(σ). Since σ is connected, the set b(σ) of all such xi’s is a
border strip. We call b(σ) the principal border strip of σ.

Diagram classes 5.3 If σ is a skew diagram, its diagram class [σ ] is the set of all skew diagrams iso-
morphic to σ. Let D = [λ/α ]. The size of D is |D| = |λ/α| and the conjugate D ′ of D is the diagram
class [λ ′/α ′ ]. If E = [µ/β ] is another diagram class, denote D t E = [λ/α t µ/β ]. Note that
D t E = E t D. We say that D is connected if λ/α is connected. If D = [σ ] is connected, then
B(D) = [ b(σ) ] is the principal border strip of D.

Removable diagrams 5.4 Let λ be a partition. A skew diagram ρ is λ-removable if there is a partition
α ⊆ λ such that ρ = λ/α. Define the set of λ-removable diagrams in a diagram class D by

Rλ(D) = { ρ ⊆ λ | ρ is λ-removable and [ ρ ] = D },

and let rλ (D) = #Rλ(D), be the number of elements in Rλ(D). For example, rλ (∅) = 1 and rλ ( ) is
the number of removable squares of λ (see [5, p. 202]). Removable squares are also called corners of the
diagram (see, for example, [24, p. 16]).

Conjugation of skew diagrams defines a bijection between the sets Rλ(D ′) and Rλ′(D), therefore

rλ (D ′) = rλ′(D).

Example 5.5 Let λ = (4, 3, 1), then rλ ( ) = 3, rλ ( t ) = 2, rλ
( )

= 1 and rλ
(
t

)
= 0.

Collages of skew diagrams 5.6 Let λ be a partition and σ be a λ-removable diagram. A collage of σ
is a sequence (ρ1, . . . , ρm) of λ-removable diagrams such that σ = ∪i∈[m ]ρi, where the union is not
necessarily disjoint. For any finite list D1, . . . , Dm of diagram classes define the set of collages of σ
determined by D1, . . . , Dm by

Cλ(D1, . . . , Dm;σ) = { (ρ1, . . . , ρm) ∈ Rλ(D1)× · · · × Rλ(Dm) | ∪i∈[m ]ρi = σ }

and
cλ(D1, . . . , Dm;σ) = #Cλ(D1, . . . , Dm;σ).

Let (ρ1, . . . , ρm) be a collage of σ. Denote D = [σ ] and Di = [ ρi ]. Then we say that D is a collage of
D1, . . . , Dm. In this case we have that |D| ≤ |D1|+ · · ·+ |Dm|.



A diagrammatic approach to Kronecker squares 483

Lemma 5.7 Let α, β, λ, µ be partitions such that α ⊆ λ and β ⊆ µ. If λ/α and µ/β are isomorphic
diagrams, then for any diagram classes D1, . . . , Dm one has

cλ(D1, . . . , Dm;λ/α) = cµ(D1, . . . , Dm;µ/β).

Definition 5.8 Let D1, . . . , Dm, D = [λ/α ] be diagram classes. Define

c(D1, . . . , Dm;D) = cλ(D1, . . . , Dm;λ/α).

Because of Lemma 5.7 this definition does not depend on the representative of D. So, we can speak of
the number of collages of D determined by D1, . . . , Dm.

Proposition 5.9 Let λ be a partition, C1, . . . , Ck pairwise distinct connected diagram classes, a1, . . . , ak
positive integers and D = C t a11 t · · · t C t akk = D1 t · · · tDm, where m = a1 + · · ·+ ak. Then

rλ (D) =
1

a1! · · · ak!

[
rλ (C1)

a1 · · · rλ (Ck)
ak −

∑
E, |E|<|D|

c(D1, . . . , Dm;E) rλ (E)

]
.

Theorem 5.10 For any diagram class D there is a polynomial pD(xC) with rational coefficients, in the
variables xC , where C runs over the set of connected diagram classes of size |C| ≤ |D|, such that for all
partitions λ the number rλ (D) is obtained from pD(xC) evaluating each xC at rλ (C). So, we have

rλ (D) = pD(rλ (C)).

If D is not connected, the polynomial pD(xC) depends only on the variables xC with |C| < |D|.

6 The numbers lr(λ, λ;π)
Let D = [σ ] and π � |D|. Then we set lr(D,D;π) = lr(σ, σ;π). This definition do not depend on the
representative of D. For example, if ∆d = t · · · t is the disjoint union of d squares, we have

Lemma 6.1 Let π = (π1, . . . , πr) be a composition of d. Then

lr(∆d,∆d;π) =

(
d

π

)
d! =

(d!)2

π1! · · ·πr!
.

We denote by D(d) the set of all diagram classes of size d.

Proposition 6.2 Let λ be a partition of n, π be a composition of n and d = |π|. Then

lr(λ, λ;π) =
∑

D∈D(d)

lr(D,D;π) rλ (D) .

The following result is a consequence of Proposition 6.2 and Theorem 5.10.

Theorem 6.3 Let π be a composition of n. Then, there exists a polynomial qπ(xC) with rational coeffi-
cients in the variables xC , where C runs over the set of connected diagram classes of size |C| ≤ |π|, such
that, for all partitions λ of n, the number lr(λ, λ;π) is obtained from qπ(xC) by evaluating each xC at
rλ (C). That is,

lr(λ, λ;π) = qπ(rλ (C)).
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7 The Kronecker coefficients g(λ, λ, ν)

The first result is an improvement of the RT method described in the introduction, that gives a closed
combinatorial (up to signs) formula of Kronecker coefficients. It incorporates the notion of λ-removable
diagram and a convenient use of special border strip tableaux. We will show its utility in Sections 8 and 9.

Theorem 7.1 Let ν be a partition of d and n ≥ d+ ν2. Then, for any partition λ of n, we have

g(λ, λ, (n− d, ν)) =

d∑
k=0

∑
D∈D(k)

∑
T∈SBST(ν̃)
e(T )=|D|

sgn(T ) lr(D,D; τ(T )) rλ (D) .

The next result is a consequence of Theorems 5.10 and 7.1.

Theorem 7.2 Let ν be a partition of d. Then there exists a polynomial with rational coefficients kν(xC)
in the variables xC , where C runs over the set of connected diagram classes of size |C| ≤ d, such that,
for all n ≥ d+ ν2 and all partitions λ of n, the Kronecker coefficient g(λ, λ, (n− d, ν)) is obtained from
kν(xC) by evaluating each xC at rλ (C), that is,

g(λ, λ, (n− d, ν)) = kν(rλ (C)).

Theorem 7.2 can be restated in the following way

Theorem 7.3 Let ν be a partition of d. Then there exists a polynomial with rational coefficients k̃ν(tB)
in the variables tB , where B runs over the set of border strip classes of size |B| ≤ d, such that, for all
n ≥ d+ν2 and all partitions λ of n, the Kronecker coefficient g(λ, λ, (n− d, ν)) is obtained from k̃ν(tB)
by evaluating each tB at rλ (B), that is,

g(λ, λ, (n− d, ν)) = k̃ν(rλ (B)).

The following lemma appears in [38, p. 23]. It was rediscovered in [26]. Corollary 2.1 in [19] is a
particular case of the lemma and can be derived from it.

Lemma 7.4 Let n, d be such that n ≥ 2d. If λ = (ab) is a partition of n, then

g(λ, λ, (n− d, d)) = #{α ` d | α ⊆ λ} −#{β ` d− 1 | β ⊆ λ}.

Proposition 7.5 Let n, d ∈ N be such that n > d. Then for any partition λ of n one has

g(λ, λ, (n− d, 1d)) =

d∑
k=0

(−1)d−k
∑

D∈D(k)

[∑
α`k

cDα c
D
α′

]
rλ (D) .

We recover with our techniques the following result that appears in [25, § 6]. Pak and Panova used
this and Lemma 7.4 to prove some results on unimodality. From next lemma we can also obtain a more
general version of Corollary 2.2 in [19].
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Lemma 7.6 Let d, n ∈ N be such that n > d. If λ = (ab) is a rectangle partition of n, then

g(λ, λ, (n− d, 1d)) =

d∑
k=0

(−1)d−k#{α ` k | α ⊆ λ and α = α′}.

Example 7.7 The polynomials kν for |ν| ≤ 3 are

1. g(λ, λ, (n)) = 1.

2. g(λ, λ, (n− 1, 1)) = rλ ( )− 1.

3. g(λ, λ, (n− 2, 2)) = rλ ( ) + rλ
( )

+ 2

(
rλ ( )

2

)
− rλ ( ).

4. g(λ, λ, (n− 2, 12)) = [rλ ( )− 1]
2

= 2

(
rλ ( )

2

)
− rλ ( ) + 1.

5. g(λ, λ, (n− 3, 3)) = rλ ( ) + rλ
( )

+ rλ
( )

+ rλ
( )

+ [2rλ ( )− 3]
[
rλ ( ) + rλ

( )]
+ 6

(
rλ ( )

3

)
− 2

(
rλ ( )

2

)
.

6. g(λ, λ, (n− 3, 2, 1)) = rλ
( )

+ rλ
( )

+ [3rλ ( )− 4]
[
rλ ( ) + rλ

( )]
+ 12

(
rλ ( )

3

)
− 4

(
rλ ( )

2

)
+ rλ ( ).

7. g(λ, λ, (n− 3, 13)) = rλ
( )

+ rλ
( )

+ [rλ ( )− 1]
[
rλ ( ) + rλ

( )]
+ 6

(
rλ ( )

3

)
− 2

(
rλ ( )

2

)
+ rλ ( )− 1.

8 Saxl conjecture
In this section we present what we believe to be a surprising application of our enhancement of the RT
method. Let ρk = (k, k − 1, . . . , 2, 1) be the staircase partition of size nk =

(
k+1
2

)
. The Saxl conjecture

states that for all k ≥ 1 the Kronecker square χρk⊗χρk contains all irreducible characters as components.
See [27] for more information about the conjecture and some results towards its proof. For each k ≥ 1,
let ζk = b(ρk) denote the principal border strip of ρk. Then |ζk| = 2k − 1. Denote also Zk = [ ζk ].

Let D be a diagram class and let D = Cta11 t · · · t Ctamm be a decomposition of D into its connected
components, such that C1, . . . , Cm are pairwise distinct connected diagram classes and a1, . . . , am ∈ N.
We call such decomposition of D a sorted decomposition.

For a partition ν = (ν2, . . . , νr) of d let t(ν) be the smallest integer that is greater or equal to
−1+
√

1+8(ν2+d)

2 . Hence nk ≥ d + ν2 if and only if k ≥ t(ν). In other words, (nk − d, ν) is a parti-
tion if and only if k ≥ t(ν). Finally, let c(ν) = max{d− 1, t(ν)}.
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Lemma 8.1 Let D = Cta11 t · · · t Ctamm be a sorted decomposition. Suppose that for each i ∈ [m ]
there is some ni such that B(Ci) = Zni . Let k ∈ N and denote a0 = k −

∑
i∈[m ] niai. If a0 < 0, then

rρk(D) = 0. If a0 ≥ 0, then

rρk(D) =

(
a0 + a1 + · · ·+ am
a0, a1, . . . , am

)
.

Theorem 8.2 Let ν ` d. Then there is a piecewise polynomial function with rational coefficients

sν : [0,∞) −→ R

such that for all k ≥ t(ν)

g(ρk, ρk, (nk − d, ν)) = sν(k).

Moreover, sν is a polynomial function of degree d in the interval [c(ν),∞) with leading coefficient fν .

Lemma 8.3 Let ν = (m, 1d−m) be a partition of d. Then the coefficient of xd−1 in sν(x) in the interval

[c(ν),∞) is −fν
[(
d
2

)
+ 1
]
.

Theorem 8.4 Let ν be a partition of d. Then g(ρk, ρk, (nk − d, ν)) > 0, for all k ≥ t(ν), with the

possible exception of at most 2d− 1+
√

1+8(ν2+d)

2 k’s.

ν sν in the interval [c(ν),∞) real roots of sν t(ν)

(1) x− 1 1 2
(2) x2 − 2x 0, 2 3

(12) x2 − 2x+ 1 1, 1 2
(3) x3 − 4x2 + 4x− 1 0.38, 1, 2.62 3

(2, 1) 2x3 − 8x2 + 8x− 1 0.15, 1.4, 2.45 3
(13) x3 − 4x2 + 5x− 2 1, 1, 2 3
(4) x4 − 7x3 + 17x2 − 18x+ 7 1, 3.32 4

(3, 1) 3x4 − 21x3 + 51x2 − 51x+ 18 1, 1, 2, 3 4
(22) 2x4 − 14x3 + 34x2 − 33x+ 11 0.81, 1 3

(2, 12) 3x4 − 21x3 + 52x2 − 53x+ 18 0.69, 1.63, 2, 2.68 3
(14) x4 − 7x3 + 18x2 − 20x+ 8 1, 2, 2, 2 3
(5) x5 − 11x4 + 48x3 − 106x2 + 119x− 54 1.56, 2, 3.79 4

(4, 1) 4x5 − 44x4 + 192x3 − 420x2 + 462x− 203 1.41, 2.3, 3.52 4
(3, 2) 5x5 − 55x4 + 240x3 − 522x2 + 567x− 245 1.42, 2.46, 3.27 4

(3, 12) 6x5 − 66x4 + 289x3 − 632x2 + 690x− 300 1.54, 2, 3.25 4
(22, 1) 5x5 − 55x4 + 241x3 − 526x2 + 571x− 246 1.53, 2, 3 4
(2, 13) 4x5 − 44x4 + 194x3 − 428x2 − 470x− 204 1.41, 2, 3 4

(15) x5 − 11x4 + 49x3 − 110x2 + 124x− 56 2, 2, 2 3

Tab. 1: First polynomial functions

From the information in Table 1 we conclude
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Corollary 8.5 Let d ∈ [ 5 ] and ν ` d. Then for all k ∈ [t(ν),∞) the character χ(nk−d,ν) is a component
of χρk ⊗ χρk .

We propose two conjectures concerning the maps sν . The first implies Saxl conjecture.

Conjecture 8.6 Let ν ` d. Then sν is positive in the interval [t(ν),∞).

Conjecture 8.7 Let ν ` d. Then the polynomial map sν has nonzero integer coefficients in the interval
[c(ν),∞) and its signs alternate. The sign of the coefficient of xk in sν(x) is (−1)d−k for all 0 ≤ k ≤ d.

9 A stability property for Kronecker squares
In this section we prove a new property for Kronecker coefficients. It generalizes, in the case of Kronecker
squares, the stability property noted by Murnaghan [22] and proved since in different ways [7, 17, 35, 37].
In particular, our graphical approach yields a new proof of Murnaghan’s stability property. It might be
possible to find a proof of this new property using other techniques, but it was the graphical method
exposed here that permitted its discovery.

Notation 9.1 For any partition µ = (µ1, . . . , µq), given k ∈ N and i ∈ [ q ], denote

µ(i,k) = (µ1 + k, . . . , µi + k, µi+1, . . . , µq).

Theorem 9.2 Let λ, ν be partitions of n, k ∈ N and i ∈ [ `(λ) ]. If λi − λi+1 ≥ d(ν), then

g(λ(i,k), λ(i,k), ν(1,ki)) = g(λ, λ, ν).

Acknowledgements
I am grateful to Christine Bessenrodt, Igor Pak and Miguel Raggi for helpful suggestions. The package
Sage [34] proved very useful in some of the computations done for the elaboration of Table 1.

References
[1] D. Avella-Alaminos and E. Vallejo, Kronecker products and the RSK correspondence, Discrete Math. 312 (2012), 1476–1486.

[2] C. M. Ballantine and R. C. Orellana, On the Kronecker product s(n−p,p) ∗ sλ, The Elec. J. of Comb. 12 (2005), #R28 pp. 26.

[3] C. M. Ballantine and R. C. Orellana, A combinatorial interpretation for the coefficients in the Kronecker product s(n − p, p) ∗ sλ, Sém.
Lothar. Combin. 54A (2006), Art. B54Af, 29 pp.

[4] Ch. Bessenrodt, On mixed products of complex characters of the double covers of the symmetric groups, Pacif. J. Math. 199 (2001), 257–268.

[5] Ch. Bessenrodt and A. Kleshchev, On Kronecker products of complex representations of the symmetric and alternating groups, Pacific J. Math.
190 (1999), 201–223.

[6] Ch. Bessenrodt and S. van Willigenburg, On (almost) extreme components in Kronecker products of characters of the symmetric groups.
arXiv:1105.3170v2 [math.CO], 2013.

[7] M. Brion, Stable properties of plethysm: on two conjectures of Foulkes, manuscripta math. 80 (1993), 347–371.

[8] P. Bürgisser, J. Landsberg, L. Manivel and J. Weyman, An overview of mathematical issues arising in the geometric complexity theory approach
to VP 6= VNP, SIAM J. Comput. 40 (2011), 1179–1209.

[9] M. Christandl, G. Mitchison, The spectra of quantum states and the Kronecker coefficients of the symmetric group, Comm. Math. Phys. 261
(2006) 789–797.



488 Ernesto Vallejo

[10] I. F. Donin, Decompositions of tensor products of representations of a symmetric group and of symmetric and exterior powers of the adjoint
representation of gl(N). Soviet Math. Dokl. 38 (1989), 654–658.
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