Poset topology and homological invariants of algebras arising in algebraic combinatorics

Abstract : We present a beautiful interplay between combinatorial topology and homological algebra for a class of monoids that arise naturally in algebraic combinatorics. We explore several applications of this interplay. For instance, we provide a new interpretation of the Leray number of a clique complex in terms of non-commutative algebra.
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.71-82, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207594
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:28:59
Dernière modification le : mardi 7 mars 2017 - 15:26:22
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:52:15

Fichier

dmAT0107.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207594, version 1

Collections

Citation

Stuart Margolis, Franco Saliola, Benjamin Steinberg. Poset topology and homological invariants of algebras arising in algebraic combinatorics. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.71-82, 2014, DMTCS Proceedings. 〈hal-01207594〉

Partager

Métriques

Consultations de la notice

75

Téléchargements de fichiers

126