Bigraphical arrangements

Abstract : We define the bigraphical arrangement of a graph and show that the Pak-Stanley labels of its regions are the parking functions of a closely related graph, thus proving conjectures of Duval, Klivans, and Martin and of Hopkins and Perkinson. A consequence is a new proof of a bijection between labeled graphs and regions of the Shi arrangement first given by Stanley. We also give bounds on the number of regions of a bigraphical arrangement. The full version of this paper is forthcoming in the $\textit{Transactions of the American Mathematical Society}$
Type de document :
Communication dans un congrès
Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.265-276, 2014, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01207608
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 1 octobre 2015 - 09:29:12
Dernière modification le : mardi 7 mars 2017 - 15:27:01
Document(s) archivé(s) le : samedi 2 janvier 2016 - 10:55:20

Fichier

dmAT0124.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01207608, version 1

Collections

Citation

Sam Hopkins, David Perkinson. Bigraphical arrangements. Louis J. Billera and Isabella Novik. 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), pp.265-276, 2014, DMTCS Proceedings. 〈hal-01207608〉

Partager

Métriques

Consultations de la notice

71

Téléchargements de fichiers

78