P. Bürgisser and C. Ikenmeyer, A max-flow algorithm for positivity of Littlewood-Richardson coefficients, pp.357-368, 2009.

C. Chindris, H. Derksen, and J. Weyman, Non-log-concave Littlewood-Richardson coefficients, Compos. Math, vol.43, pp.1545-1557, 2007.

E. Rassart, A polynomiality property for Littlewood???Richardson coefficients, Journal of Combinatorial Theory, Series A, vol.107, issue.2, pp.161-179, 2004.
DOI : 10.1016/j.jcta.2004.04.003

M. Köppe and J. D. Loera, Lattice Point Enumeration Software

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30
DOI : 10.1214/aoms/1177730491

R. Kannan and H. Narayanan, Random walks on polytopes and an affine interior point algorithm for linear programming, Mathematics of Operations Research, 2012.

R. Kannan and V. Vempala, Sampling lattice points, Proceedings of the twenty-ninth annual ACM symposium on Theory of computing , STOC '97, 1997.
DOI : 10.1145/258533.258665

M. D. Kirszbraun, ¨ Uber die zusammenziehende und Lipschitzsche Transformationen, 1934.

A. Knutson and T. Tao, The honeycomb model of GL n (C) tensor products I: proof of the saturation conjecture, Journal of the American Mathematical Society, vol.12, issue.04, pp.1055-1090, 1999.
DOI : 10.1090/S0894-0347-99-00299-4

A. Knutson, T. Tao, and C. Woodward, The honeycomb model of GL n (C) tensor products II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc, vol.17, issue.1, 1948.

J. , D. Loera, and T. Mcallister, On the computation of Clebsch-Gordan coefficients and the dilation effect, Experiment. Math, vol.15, issue.1, pp.7-20, 2006.

L. Lovász and S. Vempala, Simulated annealing in convex bodies and an O*(n/sup 4/) volume algorithm, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings., 2003.
DOI : 10.1109/SFCS.2003.1238237

K. Mulmuley and M. Sohoni, and Related Problems, SIAM Journal on Computing, vol.31, issue.2, pp.496-526, 2001.
DOI : 10.1137/S009753970038715X

K. Mulmuley and M. Sohoni, Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties, SIAM Journal on Computing, vol.38, issue.3, 2008.
DOI : 10.1137/080718115

K. D. Mulmuley, H. Narayanan, and M. Sohoni, Geometric complexity theory III: on deciding nonvanishing of a Littlewood???Richardson coefficient, Journal of Algebraic Combinatorics, vol.38, issue.2, pp.103-110, 2012.
DOI : 10.1007/s10801-011-0325-1

H. Narayanan, On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients, Journal of Algebraic Combinatorics, vol.51, issue.2, 2006.
DOI : 10.1007/s10801-006-0008-5

H. Narayanan, Estimating Certain Non-zero Littlewood-Richardson Coefficients " , arxiv preprint

K. Purbhoo, Puzzles, tableaux, and mosaics, Journal of Algebraic Combinatorics, vol.69, issue.1, pp.461-480, 2008.
DOI : 10.1007/s10801-007-0110-3

R. Schneider, Convex bodies: the Brunn-Minkowski Theory, 1993.
DOI : 10.1017/CBO9780511526282

E. Tardos, A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs, Operations Research, vol.34, issue.2, pp.250-256, 1986.
DOI : 10.1287/opre.34.2.250

A. Okounkov, Why would multiplicities be log-concave? The Orbit Method in Geometry and Physics, Progress in Mathematics, vol.213, pp.329-347, 2003.

E. P. Wigner, Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra, expanded and improved, 1959.