Local Convolutional Features with Unsupervised Training for Image Retrieval

Mattis Paulin 1 Matthijs Douze 1 Zaid Harchaoui 1 Julien Mairal 1 Florent Perronnin 2 Cordelia Schmid 1
1 LEAR - Learning and recognition in vision
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : Patch-level descriptors underlie several important computer vision tasks, such as stereo-matching or content-based image retrieval. We introduce a deep convolutional architecture that yields patch-level descriptors, as an alternative to the popular SIFT descriptor for image retrieval. The proposed family of descriptors, called Patch-CKN, adapt the recently introduced Convolutional Kernel Network (CKN), an unsupervised framework to learn convolutional architectures. We present a comparison framework to benchmark current deep convolutional approaches along with Patch-CKN for both patch and image retrieval, including our novel ``RomePatches'' dataset. Patch-CKN descriptors yield competitive results compared to supervised CNNs alternatives on patch and image retrieval.
Type de document :
Communication dans un congrès
ICCV 2015 - IEEE International Conference on Computer Vision, Dec 2015, Santiago, Chile. IEEE, pp.91-99, <10.1109/ICCV.2015.19>
Liste complète des métadonnées



https://hal.inria.fr/hal-01207966
Contributeur : Thoth Team <>
Soumis le : jeudi 1 octobre 2015 - 16:27:12
Dernière modification le : jeudi 9 février 2017 - 17:01:57
Document(s) archivé(s) le : samedi 2 janvier 2016 - 11:20:59

Fichiers

deep_patches.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Mattis Paulin, Matthijs Douze, Zaid Harchaoui, Julien Mairal, Florent Perronnin, et al.. Local Convolutional Features with Unsupervised Training for Image Retrieval. ICCV 2015 - IEEE International Conference on Computer Vision, Dec 2015, Santiago, Chile. IEEE, pp.91-99, <10.1109/ICCV.2015.19>. <hal-01207966>

Partager

Métriques

Consultations de
la notice

1220

Téléchargements du document

9742