G. Aad, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, vol.716, issue.1, pp.1-29
DOI : 10.1016/j.physletb.2012.08.020

URL : https://hal.archives-ouvertes.fr/in2p3-00722246

G. Aad, A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider, Science, vol.338, pp.1576-1582, 2012.

G. Aad, Evidence for higgs-boson yukawa couplings in the h ? ? ? decay mode with the atlas detector, JHEP, vol.1504, pp.117-1501, 2015.

T. Aaltonen, Observation of Electroweak Single Top-Quark Production, Physical Review Letters, vol.103, issue.9, p.92002, 2009.
DOI : 10.1103/PhysRevLett.103.092002

URL : https://hal.archives-ouvertes.fr/in2p3-00366602

C. Adam-bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kegl et al., Learning to discover: the higgs machine learning challenge 2014 -documentation

P. Baldi, P. Sadowski, and D. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature Communications, vol.ACAT, pp.7-2014
DOI : 10.1103/PhysRevLett.102.152001

S. Binet, B. Kegl, and D. Rousseau, Software for the atlas higgs machine learning challenge 2014. CERN Open Data Portal, 2014.

S. Chatrchyan, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, vol.716, issue.1, pp.30-61
DOI : 10.1016/j.physletb.2012.08.021

URL : https://hal.archives-ouvertes.fr/in2p3-00722244

G. Chechik, G. Heitz, G. Elidan, D. Abbeel, and P. Koller, Max-margin classification of data with absent features, Journal of Machine Learning Research, vol.9, pp.1-21, 2008.

T. Chen and T. He, Higgs boson discovery with boosted trees, Conference Proceedings, number 42, 2015.

S. Clémençon, G. Lugosi, and N. Vayatis, Ranking and scoring using empirical risk minimization, Proceedings of the 18th Annual Conference on Learning Theory, COLT'05, pp.1-15, 2005.

G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, The European Physical Journal C, vol.10, issue.3, pp.1554-1573, 2011.
DOI : 10.1140/epjc/s10052-011-1554-0

L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition, 1996.
DOI : 10.1007/978-1-4612-0711-5

T. G. Dietterich, Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms, Neural Computation, vol.6, issue.7, pp.1895-1923, 1998.
DOI : 10.1007/BF00058655

R. Johnson and T. Zhang, Learning Nonlinear Functions Using Regularized Greedy Forest, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.36, issue.5, pp.942-954, 2014.
DOI : 10.1109/TPAMI.2013.159

URL : http://arxiv.org/abs/1109.0887

B. L. Joiner, The Median Significance Level and other Small Sample Measures of Test Efficacy, Journal of the American Statistical Association, vol.55, issue.327, pp.971-985, 1969.
DOI : 10.1080/01621459.1969.10501030

L. Mackey, J. Bryan, and Y. Mo, Weighted classification cascades for optimizing discovery significance in the higgsml challenge, Conference Proceedings, number 42, 2015.

G. Melis, Dissecting the winning solution of the higgsml challenge, Conference Proceedings, number 42, 2015.

S. Rosset, C. Perlich, G. Swirszcz, P. Melville, and Y. Liu, Medical data mining: insights from winning two competitions, Data Mining and Knowledge Discovery, vol.5, issue.1, pp.439-468, 2010.
DOI : 10.1007/s10618-009-0158-x

A. The and . Collaboration, Evidence for higgs boson decays to tau+tau-final state with the atlas detector, 2013.

V. M. Abazov, Observation of Single Top-Quark Production, Physical Review Letters, vol.103, issue.9, 2009.
DOI : 10.1103/PhysRevLett.103.092001

URL : https://hal.archives-ouvertes.fr/in2p3-00365919

S. S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, The Annals of Mathematical Statistics, vol.9, issue.1, pp.60-62, 1938.
DOI : 10.1214/aoms/1177732360