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Abstract

This paper deals with the state estimation for a schistosomiasis infection dynam-
ical model described by a continuous nonlinear system when only the infected
human population is measured. The central idea is studied following two major
angles. On the one hand, when all the parameters of the model are supposed
to be well known, we construct a simple observer and a high-gain Luenberger
observer based on a canonical controller form and conceived for the nonlinear
dynamics where it is implemented.

On the other hand, when the nonlinear uncertain continuous-time system
is in a bounded-error context, we introduce a method for designing a guaran-
teed interval observer. Numerical simulations are included in order to test the
behavior and the performance of the given observers.

Keywords: high-gain, Interval observer, Observer, Schistosomiasis
model, State estimation

1. Introduction

Human schistosomiasis is a behavioral and occupational disease associated
with poor human hygiene, insanitary animal husbandry and economic activ-
ities. Among human parasitic diseases, schistosomiasis ranks second behind
malaria as far as the socio-economic and public health importance in tropical5

and subtropical areas are concerned. Urinary schistosomiasis, caused by the
species Schistosoma haematobium, is common in Africa and the Middle East.
The main clinical sign of schistosomiasis infection is haematuria itself caused
by the depositions of eggs by an adult female’s worms through the bladder by
urinary intermediary [1].10
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The most effective form of treatment for infected individuals is the use of
the drug praziquantel a drug that kills the worms with high efficiency. Con-
trol programs often consist on mass chemotherapy possibly supplemented by
snail (intermediate host) control. Since school-age children are the heaviest in-
fected group that suffer the most from morbidity and by that are major sources15

of infection for the community, school targeted chemotherapy can be then an
adequate effective approach to control that morbidity [1, 2].

Schistosomiasis have one of the most complex host-parasite process to model
mathematically because of the different steps of growth of larval assumed by the
parasite and the requirement of two host elements (definitive human host and20

intermediate snail hosts) during their life cycle.
Current world-wide interest in the control of schistosomiasis has focused

attention upon the intermediate hosts of the causative parasite, since there is
general agreement that the most promising method of controlling the disease
is to eliminate or greatly reduce the numbers of these vector snails. It is nec-25

essary to obtain information about snail populations, whether the information
is used for snail-control evaluation, for ecological research, or for the study of
transmission potential.

In epidemiology, mathematical models are very often used to describe the
dynamic evolution of the diseases. Deterministic Ordinary differential Equations30

(ODEs) are one of the major modeling tools and are used in our case.
In this paper, we are interested in the estimation problem of the unknown

snails population state of a schistosomiasis model whose dynamics are modeled
by a continuous time system.

Symbolically, we can write a dynamical system as :35

 Ẋ(t) = F (X(t)),

Y (t) = h(X(t)),
(1)

with X(t) ∈ Rn, Y (t) ∈ Rp, p < n.
If it is possible to have the value of the state at some time t0 then it is possible

to compute X(t) for all t ≥ t0 by integrating the differential equation with the
initial condition X(t0). Unfortunately, it is not often possible to measure the
whole state at a given time and by the same way to integrate the differential40

equation because one does not know the initial condition. One can only have a
partial information on the state and this partial information is precisely given by
Y (t) the output of the system. Therefore we shall show how to use this partial
information Y (t) together with the given model in order to have a reliable
estimation of the unmeasurable state variables. A state observer is usually45

employed, in order to accurately reconstruct the state variables of the dynamical
system. In the case of linear systems, the observer design theory developed by
Luenberger [3], offers a complete and comprehensive answer to the problem. In
the field of nonlinear systems, the nonlinear observer design problem is much
more challenging and has received a considerable amount of attention in the50

literature.
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An observer for (1) is a dynamical system Ż(t) = F̂ (Z(t), Y (t)),

X̂(t) = L(Z(t), Y (t))
(2)

whose task is state estimation. It is expected to provide a dynamical estimate
X̂(t) of the state X(t) of the original system. The output is in general a function
of the state variable, that is, Y (t) = h(X(t)).55

One usually requires at least that
∣∣∣X̂(t)−X(t)

∣∣∣ goes to zero as t → ∞.

When the convergence of X̂(t) towards X(t) is exponential, the system (1) is an
“ exponential observer ”. More precisely, system (2) is an exponential observer
for system (1) if there exists λ > 0 and c0 ≥ 0 such that, for all t ≥ 0 and for all

initial conditions
(
X(0), X̂(0)

)
, the corresponding solutions of (1)-(2) satisfy60 ∣∣∣X̂(t)−X(t)
∣∣∣ ≤ e−λ t (∣∣∣X̂(0)−X(0)

∣∣∣+ c0

)
.

The best situation corresponds to the case where c0 = 0. In this situation a
good estimate of the real unmeasured state is rapidly obtained. One must notice
that we do not need to care about the initial condition of the observer since the
convergence of X̂(t) towards the real state X(t) does not depend on this choice.

There are numerous means to deal with the synthesis of nonlinear observers.65

The most general method to tackle it is to use a “high-gain method observer ”
when the functions of the variables are perfectly known in the dynamical model.
This means is much more general than “the output injection model ” developed
in [4, 5, 6, 7], which is applied to a very special class of systems only.

If it happens that some functions of the variables are partially known in70

the dynamical model but bounded with a priori known bounds, we can define

a bounded error observer giving X̂(t) with
∣∣∣X̂(t)−X(t)

∣∣∣ bounded by a “rea-

sonable” positive real constant (depending on the uncertainty), “reasonable”
meaning that this constant is small with respect to the measurement errors as
developed in [8].75

This paper shows out first a high-gain observer for a reduced nonlinear model
of schistosomiasis as proposed by Allen [9]. This high-gain observer method,
has been initiated in [10, 11, 12]. However, the convergence of this kind of
observers is difficult to prove (because of the global Lipshitz condition). So, we
propose a simpler observer whose convergence analysis is studied. This nonlinear80

observer design does not require Lipschitz extension of functions and change of
coordinates for the system contrary to the high-gain observer.

In the second part, we will present an interval observer design to handle the
already mentioned uncertainties of the model parameters. The methodology of
interval observers has already been studied using a theoretical framework [13,85

14], and interval observers have been developed for particular models [15, 16],
and have been validated experimentally [14]. In these works the authors address
conditions for stability of the interval observer.
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The construction of an observer requires some properties of observability and
requires essentially the existence of globally defined and globally Lipschitzian90

change of coordinates.
The paper is organized as follows: In Section 2 we present the biological

assumptions that guided the model’s structure and the model’s equations. In
Section 3 we perform a high-gain observer design. Section 4 will point out
a simple observer design. Section 5 tackles the guaranteed interval observer95

construction. Finally Sections 6 and Section 7 will respectively be constituted
of the different estimator simulations and the conclusion.

2. Model and assumptions

In this section, the model proposed is a modified version of Allen’s model
[9]. The main point in the model presented in Allen in a relatively isolated100

community, based on the model presented in Allen [9] is to take into account
an additional mammalian host as well as a competitor snails. The model as-
sumes that hosts population and infection rates are independent of environ-
mental factors. The totality of simplifying assumptions lead one to question the
quantitative predictions of the model. However, the qualitative features of the105

results are in themselves of considerable interest [9]. Here, we ignore competitor
snails population. Thus, the total human population size, denoted by NH(t),
is split into susceptible individuals (X1(t)) and infected individuals (X2(t)) so
that NH(t) = X1(t) + X2(t), and the total mammal population size, denoted
by NM (t), is also subdivided into susceptible mammals (X6(t)) and infected110

mammals (X7(t)) so that NM (t) = X6(t) + X7(t). Whereas, the total snails
population, denoted by NS(t), is subdivided into susceptible snail host (X3(t)),
infected snails which are not yet shedding cercariae (X4(t)) and infected and
shedding snail (X5(t)). Thus NS(t) = X3(t) + X4(t) + X5(t). We assume that
the total time interval considered, T , is not too large so that the infection in115

the definitive hosts (e.g. human) does not result death. Further, it is assumed
that infected snails and infected mammals do not recover from schistosomiasis
as their life spans are short in comparison to that for humans. For simplicity,
assume that births in each population group (human, snail and alternate host)
were allowed to enter only the uninfected populations. Another assumption120

made is that the latent periods can be ignored in both definitive and intermedi-
ate hosts. This means that we disregard the time period between the moment
when a cercaria penetrates a definitive host and the moment when the cercaria
has grown to a sexually mature parasite. Other assumptions are that the re-
covery rate of infected intermediate hosts is independent of the length of the125

infectious period, and that the rate of output of cercariae from an infected in-
termediate host is constant throughout the period when it remains infected. We
furthermore assume that births and deaths were considered to be proportionate
to population size .
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Thus, the differential equations which govern the disease are :130 

dX1

dt
= −t15X5X1 + r12X2,

dX2

dt
= t15X5X1 − r12X2,

dX3

dt
= b3 (X3 +X4 +X5)− t32X2X3 − d3X3 − t37X3X7,

dX4

dt
= t32X2X3 + t37X3X7 − d4X4 − r54X4,

dX5

dt
= r54X4 − d5X5,

dX6

dt
= b6(X6 +X7)− t65X5X6 − d6X6,

dX7

dt
= t65X5X6 − d7X7.

(3)

Where :

• t15 = transmission rate from infected snails to uninfected humans,
• t32 = transmission rate from infected humans to uninfected snails,

• t37 = transmission rate from infected mammals to susceptible snail,

• t65 = transmission rate from infected snails to susceptible mammals.

Birth and death rates for the various sub-populations are denoted by bi et
di, respectively, for i = 1, 2, ..., 7. Also, r12 is the treatment rate of infected
human population and r54 denotes the rate that the latent snail population X4135

becomes shedding X5.
It is assumed for simplicity that b1 = d1 = d2, b3 = d3 = d4 = d5, and

b6 = d6 = d7. Then all total populations are constant thanks to the assumptions
on bi and di. This is a technical assumption aimed to reduce the complexity of
the mathematical analysis, but is not always a plausible approximation. This140

assumption of a constant population size is also realistic when modeling a disease
over many years if the births are approximately balanced by the natural deaths.
More general models can be constructed and analyzed, but our goal here is
to show what may be deduced from simple model. Furthermore, this simple
model has additional value as it is based on models that include more detailed145

structure.
We introduce the proportions of the snails and mammals sub-populations:

xi =
Xi

NS
for i = 3, 4, 5, and xi =

Xi

NM
for i = 6, 7.

Using the number of infected humans and the proportions of the other sub-
populations and the fact that X1 = NH−X2, x3 +x4 +x5 = 1, and x6 +x7 = 1,
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system (3) reduces to one of the following equivalent systems (4) and (5). The150

first one using X2, x3, x5, and x7 is given by:

dX2

dt
= t15 (NH −X2)NS x5 − r12X2,

d x3

dt
= b3 − (t32X2 + t37NM x7 + b3) x3,

d x5

dt
= r54 (1− x3 − x5)− b3 x5,

d x7

dt
= t65NS x5 (1− x7)− b6 x7.

(4)

The second one using X2, x4, x5, and x7 is given by:

dX2

dt
= t15 (NH −X2)NS x5 − r12X2,

d x4

dt
= (t32X2 + t37NM x7) (1− x4 − x5)− (b3 + r54)x4,

d x5

dt
= r54 x4 − b3 x5,

d x7

dt
= t65NS x5 (1− x7)− b6 x7.

(5)

To compute X(t) = (X2(t), x4(t), x5(t), x7(t)) at time t using equations 5,
we need to know the value of the state X(t0) at a given time t0 < t. However,
this is not possible in general. To make the model useful, we have to find how155

to estimate the unknown value X(t). This is the main concern we will address
in this paper. To achieve this goal, we will use a tool from control theory
called observer. What is noticeable in this model is that the state of snails and
mammalians are not available for the measurement in so far as the only available
information at time t is the value of the infected human population. This means160

that it is possible to detect through clinical signs the number of infected people
at a given time t (it is provided by health department). Then the measurable
output is y(t) = X2(t).

3. A high-gain observer for a schistosomiasis model

We construct a high-gain observer for our system using the techniques devel-165

oped in [10, 12]. The high-gain observer construction involves some complicated
computations [11, 10, 17]. Since systems (4) and (5) are equivalent, we shall use
system (4) which is more adapted to the high-gain observer construction.

Let us denote by x(t) = (X2(t), x3(t), x5(t), x7(t)) the state vector of system
(4), f the vector field defining the dynamics of the system (4), and h the output
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function, that is y(t) = h(x(t)) = X2(t), and

f =


t15 (NH −X2)NS x5 − r12X2

− (t32X2 + t37NM x7 + b3) x3 + b3
r54 (1− x3 − x5)− b3 x5

t65NS x5 (1− x7)− b6 x7

 .

To construct a high-gain observer for (4), one has to perform a change of
coordinates in order to write the system in a simpler form. This usually done170

by using the output function together with its time derivatives.
Let Φ be the function Φ : D̊ → R4 (D̊ is the interior of D) defined as follows:

Φ(x) =



h(x)

Lfh(x)

L2
fh(x)

L3
fh(x)

 ,

where Lf denotes the Lie derivative operator with respect to the vector field f .
Thus

Φ(x) =



X2

−r12X2 +NSt15 (NH −X2)x5

NSt15 (NH −X2) (r54 (1− x3 − x5)− b3x5)

+ (−r12 −NSt15x5) (−r12X2 +NSt15 (NH −X2)x5)

(−r54 + r54x3 + b3x5 + r54x5)

(NSt15 (b3 (NH −X2) +NH (r12 + r54 + 2NSt15x5)−X2 (2r12 + r54 + 2NSt15x5)))

− (r12X2 −NHNSt15x5 +NSt15X2x5)(
r2
12 + 2NSr12t15x5 +NSt15 (r54 (−1 + x3 + x5) + x5 (b3 +NSt15x5))

)
+NSr54t15 (NH −X2) (−b3 + b3x3 + t32X2x3 +NM t37x3x7)



.

175

The Jacobian of Φ can be written:

dΦ

d x
=



1 0 0 0

−r12 −NS t15 x5 0 NS t15 (NH −X2) 0

α0 −NS r54 t15 (NH −X2) α1 0

α2 α3 α4 NM NS r54 t15 t37 (NH −X2) x3

 ,

7



where:
α0 = (r12 +NS t15 x5) 2 +NS t15 (b3x5 + r54 (−1 + x3 + x5))

α1 = −NS t15 (b3 (NH −X2) +NH (r12 + r54 + 2NS t15 x5)−X2 (2 r12 + r54 + 2NSt15 x5))

α2 = NS r54 t15 t32 (NH −X2) x3 +NS t15 (b3 + 2 r12 + r54 + 2NS t15 x5) + (−r12 −NSt15x5)

(−b3x5 − r54 (−1 + x3 + x5))
(
(r12 +NS t15x5) 2 +NS t15 (b3x5 + r54 (−1 + x3 + x5))

)
+NS r54 t15 (b3 − x3 (b3 + t32X2 +NM t37 x7))

α3 = NS r54 t15 (2 b3 (NH −X2) +NH (r12 + r54 + t32X2 + 3NS t15 x5 +NM t37 x7))

−NS r54 t15 (X2 (3r12 + r54 + t32X2 + 3NS t15 x5 +NM t37 x7))

α4 = b23NH NS t15 + b3NH NS r12 t15 +NH NS r
2
12 t15 + 2 b3NHNS r54 t15 +NH NS r12 r54 t15

+NH NS r
2
54 t15 − 3NH N

2
S r54 t

2
15 − b23NS t15X2 − 3 b3NS r12 t15X2 − 3NS r

2
12 t15X2

−2 b3NS r54 t15X2 − 3NS r12 r54 t15X2 −NS r2
54 t15X2 + 3N2

S r54 t
2
15 + 3NH N

2
S r54 t

2
15 x3

−3N2
S r54 t

2
15X2 x3 + 6 b3NH N

2
S t

2
15 x5 + 4NH N

2
S r12 t

2
15 x5 + 6NH N

2
S r54 t

2
15 x5

−6 b3N
2
S t

2
15X2 x5 − 6N2

S r12 t
2
15X2 x5 − 6N2

S r54 t
2
15X2 x5 + 3NH N

3
S t

3
15

2
5 − 3N3

S t
3
15X2 x

2
5.

The determinant of
dΦ

d x
can be expressed by:

Γ(X2, x3, x5) = NM N3
S r

2
54 t

3
15 t37 (NH −X2) 3 x3.

The Jacobian
dΦ

d x
is non-singular in the region D̊ and moreover Φ(x) is one-to-

one from D̊ to Φ(D̊). So the map Φ is a diffeomorphism from D̊ to Φ(D̊). This
implies that the system (4) with the output y(t) = X2(t) is observable. In the180

news coordinates defined by (z1, z2, z3, z4)T = z = Φ(x) = (h(x), Lfh(x), L2
fh(x), L3

fh(x))T ,
our system can be written in the canonical form as follows:



ż(t) =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


︸ ︷︷ ︸

A

z(t) +


0
0
0

Ψ(z(t))

 ,

y(t) = z1(t) = (1, 0, 0, 0)︸ ︷︷ ︸
C

z(t),

(6)

where: Ψ(z) = L4
fh(Φ−1(z)) = L4

fh(x) = ψ(x).
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The function ψ is smooth (it is a polynomial function of x = (X2, x3, x5, x7))
on the compact set D. Hence, it is globally Lipschitz on D. Therefore it can185

be extended by ψ̃, a Lipschitz function on R4 which satisfies ψ̃(x) = ψ(x), for
all x ∈ D. In the same manner, we define Ψ̃ the Lipschitz prolongation of the
function Ψ. So we have the following system (7) defined on the whole space R4.
The restriction of (7) to the domain D is the system (6):

ż = Az +


0
0
0

Ψ̃(z)

 ,

y = C z.

(7)

According to [10], an exponential (high-gain) observer for system (7) is given190

by

˙̃z = A z̃ +


0
0
0

Ψ̃(z̃)

+ S−1(θ)CT (y − C z̃), (8)

where S(θ) is the solution of 0 = −θ S(θ)−AT S(θ)− S(θ)AT +CT C and θ is
large enough.

Here, S(θ) =



1

θ
− 1

θ2

1

θ3
− 1

θ4

− 1

θ2

2

θ3
− 3

θ4

4

θ5

1

θ3
− 3

θ4

6

θ5
−10

θ6

− 1

θ4

4

θ5
−10

θ6

20

θ7


.195

This observer is particularly simple since it is only a copy of system (7),
together with a corrective term depending on θ. For the proof one can see [10].

An observer for the original system (4) can then be given by:
˙̃z = A z̃ +


0
0
0

Ψ̃(z̃)

+ S−1(θ)CT (y − C z̃),

x̂(t) = Φ−1(z(t)).

(9)

Or more simply a high-gain observer for the original system (4) can be given
by:200

˙̂x = f̃(x̂) +

[
dΦ

d x

]−1

x=x̂

× S(θ)−1 CT (y − h(x̂)). (10)

9



However, the set D which is positively invariant for system (4) is not necessary
positively invariant for the observer (10), and Φ(D) is not positively invariant

for the observer (8). Therefore the expressions
[
dΦ
d x

]−1

x=x̂
and Φ−1(z(t)) are not

well defined in general.
If there exists Φ̃ a prolongation of the diffeomorphism Φ to the whole space205

R4, that is Φ̃ is a diffeomorphism from R4 to R4 whose restriction to D̊ is
Φ, then it will be sufficient to replace Φ by Φ̃ in (9) and (10) and so all the
expressions will be well defined. However, for our system such a prolongation
does not exist since dΦ

d x is singular on the set {X2 = NH} ∪ {x3 = 0}. So
instead of working on D, we have to consider first a set Dε ⊂ D given by210

Dε = D ∩ {X2 < NH − ε, x3 > ε}. The positive number ε has to be chosen in
such away that Dε is positively invariant for system (4).

On {X2 = NH − ε}, we have

dX2

dt
= t15 εNS x5 − r12 (NH − ε )

≤ ε(t15NS + r12)− r12NH (since x5 ≤ 1).

On {x3 = ε}, we have

d x3

dt
= − (t32X2 + t37NM x7 + b3) ε+ b3

≥ b3 − (t32NH + t37NM + b3) ε (since X2 < NH and x7 ≤ 1).

So we take ε ≤ min
{ r12NH
t15NS + r12

,
b3

t32NH + t37NM + b3

}
.215

With this choice of ε, the map Φ is a diffeomorphism from Dε to Φ(Dε).
It is then theoretically possible to find a diffeomorphism Φ̃ε from R4 to R4

whose restriction to Dε is Φ. However, it is generally difficult to give an explicit
analytical expression of the extension Φ̃ε. Therefore, the simulations will be
done without extending the diffeomorphism Φ.220

4. A “ simple observer” for a schistosomiasis model

Following the high-gain implementation difficulties related in the previous
section, we provide a simple observer design. In this section we consider sys-
tem (5) on the set D = [0, NH ]× [0, 1]× [0, 1]× [0, 1].

We shall prove that a simple candidate observer for system (5) on the set D225
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is given by:

dX̂2

dt
= t15 (NH − X̂2)NS x̂5 − r12 X̂2 + L1 (y − X̂2)

d x̂4

dt
=

(
t32 X̂2 + t37NM x̂7

)
(1− x̂4 − x̂5)− (b3 + r54) x̂4,

d x̂5

dt
= r54 x̂4 − b3 x̂5,

d x̂7

dt
= t65NS x̂5 (1− x̂7)− b6 x̂7.

(11)

It is remarkable that the set D = [0, NH ]× [0, 1]× [0, 1]× [0, 1] is a positively
invariant compact set for system (11).

This observer is simply a copy of system (5) plus a corrective term given by
L1 (y − X̂2). The number L1 is a constant positive real number that will be230

chosen in order to ensure the convergence of the estimation error.
We will denote x(t) = (X2(t), x4(t), x5(t), x7(t)) the state vector of system

(5), and x̂(t) =
(
X̂2(t), x̂4(t), x̂5(t), x̂7(t)

)
the state vector of the candidate

observer (11). The estimation error is e(t) = (e2(t), e4(t), e5(t), e7(t)) = x(t) −
x̂(t).235

We shall make the following assumptions on the model parameters:

Assumption 4.1.
NHt32 +NM t37

b3 + r54
< 1,

r54

b3
≤ 1

2
,

NS t65

b6
≤ 1

Proposition 4.1. Under the assumption 4.1, the system governed by (11) is
an exponential observer for the system (5) for L1 satisfying240

L1 ≥ max

(
NH NS t15 t32

b3 + r54
− r12, 0

)
,

i.e, there exists a positive real number λ such that for all initial conditions
(x̂(0), x(0)) ∈ D ×D, one has |x̂(t)− x(t)| ≤ e−λ t |x̂(0)− x(0)| .

Proof. The estimation error e(t) = (e2(t), e4(t), e5(t), e7(t)) = x(t)− x̂(t) obeys
the following differential equation:

ė = Ad e+ f(x)− f(x̂) (12)

where245

Ad =


−L1 − r12 0 0 0

0 −b3 − r54 0 0
0 0 −b3 0
0 0 0 −b6

 , f(x) =


t15NS x5 (NH −X2)

(t32X2 + t37NM x7) (1− x4 − x5)
r54 x4

t65NS x5(1− x7)

 .

11



Let P =



1

2L1 + 2r12
0 0 0

0
1

2b3 + 2r54
0 0

0 0
1

2b3
0

0 0 0
1

2b6


and consider the follow-

ing candidate Lyapunov function for the error equation (12):

V (e) = eT P e

We can write:250

f(x)− f(x̂) =

∫ 1

0

∂f

∂x
(sx+ (1− s)x̂)ds e = R(e, x̂) e

The explicit expression of the matrix R(e, x̂) is given in appendix A.
Therefore ė = (Ad +R(e, x̂)) e and then the derivative of V (e) with respect

to time along the solutions of the estimation error equation is

V̇ (e) = eT
(
P Ad +ATd P + P R(e, x̂) +R(e, x̂)T P

)
e.

Simple computations give

V̇ (e) = −e2
2 − e2

4 − e2
5 − e2

7

− t15(e5 + x̂5)NS
L1 + r12

e2
2 −

(
t32(e2 + X̂2)

b3 + r54
+
t37(e7 + x̂7)NM

b3 + r54

)
e2

4 −
t65(e5 + x̂5)NS

b6
e2

7

+
t15NS

(
NH − X̂2

)
L1 + r12

e2e5 +

(
r54

b3
− t32(e2 + X̂2) + t37(e7 + x̂7)NM

b3 + r54

)
e4e5

+
t65(1− x̂7)NS

b6
e5e7 −

(x̂4 + x̂5 − 1) (e2t32 + e7t37NM )

b3 + r54
e4

V̇ (e) = −e2
2

(
t15x5NS
L1 + r12

+ 1

)
− e2

4

(
t37x7NM + t32X2

b3 + r54
+ 1

)
− e2

5 − e2
7

(
t65x5NS

b6
+ 1

)

− t32(x̂4 + x̂5 − 1)

b3 + r54
e2e4 +

t15NS

(
NH − X̂2

)
L1 + r12

e2e5 +

(
r54

b3
− t37x7NM + t32X2

b3 + r54

)
e4e5

− t37NM (x̂4 + x̂5 − 1)

b3 + r54
e4e7 +

t65(1− x̂7)NS
b6

e5e7

255

The expression of V̇ can be written:

V̇ (e) = − (a2 + 1) e2
2 − (a4 + 1) e2

4 − e2
5 − (a7 + 1) e2

7

−b24 e2e4 + b45 e4e5 − b47 e4e7 + b57 e5e7 + b25 e2e5,

12



with: a2 =
x5NSt15

L1 + r12
; a4 =

X2t32 + x7NM t37

b3 + r54
; a7 =

x5NSt65

b6
;

b24 =
(−1 + x̂4 + x̂5) t32

b3 + r54
; b45 =

r54

b3
−X2t32 + x7NM t37

b3 + r54
; b47 =

(−1 + x̂4 + x̂5)NM t37

b3 + r54
;

b57 =
(1− x̂7)NSt65

b7
; b25 =

(
−X̂2 +NH

)
NSt15

L1 + r12
.260

The derivative of V (e) can be seen as a quadratic form in ei. Applying the
Gauss-Lagrange reduction to this quadratic form leads to:

−V̇ (e) = (1 + a2) (e2+F2(e4, e5))2+l1 (e4 + F4(e5, e7))
2
+l2 (e5 + F5(e7))

2
+l3 e

2
7

where l1, l2, l3 are functions of the model parameters, and the Fi are linear
forms in their arguments. The exact expressions of the li and the Fi are given
in Appendix A.265

In Appendix A we show that if the parameters satisfy Assumption 4.1, then
it is possible to choose a gain L1 in such a way that all the li are positive. This
proves that V̇ is negative definite which ends the proof.

5. Design of the interval observers for a schistosomiasis model

The logic of interval observers is to generate estimated bounds that are270

caused by a lack of reliability in the models of measurements [13, 14]. Here, we
intend to explore the possibility of designing interval observers in the case where
transmission rate of the model (3) that are t15, t32, t37 and t65 remain partially
known. Moreover, we seek to obtain an estimation even during the transients of
the system that is to choose bounds that have been valid since the beginning.275

Given the uncertain bounds in the model, we are looking for dynamic ones to
estimate the variables. This situation resembles many epidemiological models
either by the lack of confidence in model parameters calibrated from experimen-
tal data, or because of models dynamical simplicity taking into account their
complexity.280

We will consider in this case that such parameters are bounded by a given
positive number rather than given by a single value. The design is based on two
points observers which help estimate in real time the lower and upper bound of
the vectors state, given the following type of uncertain nonlinear systems:

(S) :


ẋ(t) = Ax(t) + ψ(x, p),

y(t) = Cx(t),

x(t0) ∈ [x0] ∧ p ∈ [p],

where A is a matrix of dimension n × n, t ∈ [t0, tnT
], [p] = [p−, p+] is a real

interval vector of Rnp , ψ ∈ Ck−1(D× [p]), D× [p] ⊆ Rn+np is an open set; n, m

13



and np are the dimension of respectively the state vector x, the output vector y
and the uncertain parameter vector p. We assume that measurements ym(t) are
subject to an unknown but bounded, with known bound, additive error. Thus
the feasible domain for measurements are given by the following boxes

Y = [ym(t)− b, ym(t) + b],

where b is the vector of maximal measurement error.285

We suppose that the input is uncertain with known bounds ψ−, ψ+ such
that:

ψ− ≤ ψ ≤ ψ+,∀t ∈ R+.

Remark 5.1. The inequalities applied to vectors must be considered term by
term.

Under this assumption, we build two asymptotic observers.

Definition 5.1. Let us consider the system (S). The pair of systems (S−, S+)
with290

(S−) :

{
ẋ−(t) = Ax−(t) +B−(ψ−(t), ψ+(t)),

x−(t0) = x−0 ,

(S+) :

{
ẋ+(t) = Ax+(t) +B+(ψ−(t), ψ+(t)),

x+(t0) = x+
0 ,

where x−0 ≤ x0 ≤ x+
0 is an interval estimator for the system (S) if for any

compact set D0 ⊂ D, the coupled system (S, S−, S+) verifies for any initial
conditions x(t0) ∈ D0:

∀t ≥ t0, x−(t) ≤ x(t) ≤ x+(t).

Function B+ (respectively B−) is such that:

B−(ψ−(t), ψ+(t)) ≤ B(ψ(t)) ≤ B+(ψ−(t), ψ+(t)).

We assume that the imprecisely known function ψ can be bounded by a lower
and upper Lipschitz function. Moreover, there exists two known functions ψ−(·)
and ψ+(·) built according to the bounds of [p] and a known number M < +∞
such that:295 

∀p ∈ [p], ∀x ∈ D,

ψ−(x, p) ≤ ψ(x, p) ≤ ψ+(x, p),

‖ψ−(x, p)− ψ+(x, p)‖ ≤M.

(13)
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Proposition 5.1. ([14])
If there exists a gain K, a positive matrix, such as the non-diagonal elements

of the matrix (A −KC) are non-negative and Hurwitz with the condition (13)
fulfilled, we can propose the interval observer for system (S) the same spirit as
for the classical Luenberger approach, provided x−0 ≤ x0 ≤ x+

0 :300  ẋ+(t) = (A−KC)x+(t) + ψ+(x−, x+, p−, p+, u(t)) +K y+
m(t),

ẋ−(t) = (A−KC)x−(t) + ψ−(x−, x+, p−, p+, u(t)) +K y−m(t).
(14)

Remark: It is shown in [14] that the observation error remains positive and
with A−K C a Hurwitz matrix this error converges.

We consider our model whose dynamics are expressed in (4) and rewriting
as follows for some convenience.

dX2

dt
= t15 (NH −X2)NS x5 − r12X2,

d x4

dt
= (t32X2 + t37NM x7) (1− x4 − x5)− (b3 + r54)x4,

d x5

dt
= r54 x4 − b3 x5,

d x7

dt
= t65NS x5 (1− x7)− b6 x7.

(15)

We write system (15) in the typical form of (S) where305

A =


−r12 0 0 0

0 − (b3 + r54) 0 0
0 r54 −b3 0
0 0 0 −b6


and

ψ =


t15 (NH −X2)NS x5

(t32X2 + t37NMx7) (1− x4 − x5)
0

t65NSx5 (1− x7)


and C = (1, 0, 0, 0).

We assume that the transmission rates t15, t32, t37 and t65 are unknown
but belong to the following intervals [t−15, t

+
15], [t−32, t

+
32], [t−37, t

+
37], [t−65, t

+
65] re-

spectively. We denote p = (t15, t32, t37, t65). The initial state variables are also310

unknown but within the interval vector.
All the components ψ(·) of the vector function are Lipschitz on D with

respect to the state vector for any p ∈ [p]. Then we can consider a Lipschitz
extension of ψ(·) on R4 since D is positively invariant by the system (15), see
for example [18], that we also denote by ψ(·). Moreover, there exists two known315
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functions ψ−(·) and ψ+(·) built according to the bounds of [p] such as

ψ− =


t−15 (NH −X2)NS x5(

t−32X2 + t−37NMx7

)
(1− x4 − x5)

0
t−65NSx5 (1− x7)


and

ψ+ =


t+15 (NH −X2)NS x5(

t+32X2 + t+37NMx7

)
(1− x4 − x5)

0
t+65NSx5 (1− x7)

 .

It is not hard to show that there exists a real positive number M < +∞ such
that the condition (13) fulfilled (see Appendix B). For the observer gain K =
[l, 0, 0, 0]T , where l is a positive real number, the matrix

A−KC =


−r12 − l 0 0 0

0 −b3 − r54 0 0
0 r54 −b3 0
0 0 0 −b6


is Hurwitz.

Therefore, given an interval estimate ([z−1 , z
+
1 ], [z−2 , z

+
2 ], [z−3 , z

+
3 ], [z−4 , z

+
4 ])T ,

the estimation in the basis (X2, x4, x5, x7) is given by320 

ż+
1 = −(r12 + l) z+

1 + t+15

(
NH − z+

1

)
z+

3 NS + l y+
m(t),

ż+
2 = − (b3 + r54) z+

2 +
(
t+32z

+
1 + t+37NMz

+
4

) (
1− z+

2 − z
+
3

)
,

ż+
3 = r54z

+
2 − b3 z

+
3

ż+
4 = −b6z+

4 + t+65NS z
+
3

(
1− z+

4

)
,

ż−1 = −(r12 + l) z−1 + t−15

(
NH − z−1

)
z−3 NS + l y−m(t),

ż−2 = − (b3 + r54) z−2 +
(
t−32z

−
1 + t−37NMz

−
4

) (
1− z−2 − z

−
3

)
,

ż−3 = r54z
−
2 − b3 z

−
3 ,

ż−4 = −b6 z−4 + t−65NS z
−
3

(
1− z−4

)
.

(16)

6. Simulations

This part consists in showing out some simulation exercises to stress on the
efficiency of the proposed observers of system (4) and system (5). The different
snails and mammals populations are estimated via infected humans population
measurements. In the first place the ”simple observer” design was implemented.325

The population sizes estimation behave satisfactory along the simulations. For
the simulation of the high-gain observer we extend the function f that defines
the system (4) by continuity in order to make it globally Lipschitz on R4 in the

16



following way: We denote f̃ the prolongation of f to R4 and the function π the
projection on the domain D and we construct f̃ = f ◦π. The extend function f̃330

has the same Lipschitz coefficient as f . The projection π is defined as follows:
for x ∈ R4, π(x) = x where x ∈ D is such that dist(x,D) = ‖x − x‖, i.e., x
satisfies ‖x − x‖ = minu∈D‖u − x‖. The initial values of state variables in all
simulations concerning the high-gain observer are X2(0) = 1600, x3(0) = 0.4,
x5 = 0.3, x7 = 0.5, X̂2(0) = 2000, x̂3(0) = 0.7, x̂5(0) = 0.1, x̂7(0) = 0.6.335

The parameter values used in the simulation are those estimated and re-
ported in [9]. More specifically, t15 = 2, 23 × 10−7, t37 = 5, 21 × 10−6, t32 =
5, 23 × 10−6, t65 = 2, 78 × 10−7, r12 = 4, 47 × 10−4, r54 = 2, 50 × 10−2,
b3 = 6, 00 × 10−2, d6 = 2, 74 × 10−4, d3 = 8, 86 × 10−3, b6 = 5.56 × 10−4.340

We choose the following NH = 5000, NS = 95000 and NM = 2500.
With these parameters, the gain chosen is θ = 1 in all the simulations.
Based on Figures 1 to 4, one can see that the high-gain observer performs as

expected and that the convergence of the estimates delivered by the high-gain
observer is quite fast.345
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Figure 1: Simulation of system (4) with its high-gain observer (10): X2(t)(red
curve) and its estimate X̂2(t) (blue curve) delivered by the high-gain observer
(10) when f is extended
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Figure 2: Simulation of system (4) with its high-gain observer (10): x3(t)(red
curve) and its estimate x̂3(t) (blue curve) delivered by the high-gain observer
(10) when f is extended
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350 Figure 3: Simulation of system (4) with its high-gain observer (10): x5(t)(red
curve) and its estimate x̂5(t) (blue curve) delivered by the high-gain observer
(10) when f is extended
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Figure 4: Simulation of system (4) with its high-gain observer (10): x7(t)(red
curve) and its estimate x̂7(t) (blue curve) delivered by the high-gain observer
(10) when f is extended
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In order to test the robustness of the high-gain observer to noisy measure-
ments, the measurements are vitiated by an additive Gaussian noise (5% of a355

normal gaussian noise with mean zero and standard deviation one). In Figures 5
to 8 the states variables and their estimates obtained using noisy data of X2 are
shown. Simulations corresponding to free-noise and noisy data have been car-
ried out with the same θ value. The chosen value is the one which provided the
best compromise between fast convergence and well noise rejection. In the case360

of noisy measurements, the choice of relatively high values of θ are to be avoided
since they amplify the noise and the obtained estimates may be unusable.

As it is known, the high-gain observer is very sensitive to data noise (one
can see [19] and references therein) while our simple observer is less sensitive
to data noise. Thus if the output measurements X2(t) are not good enough, it365

is appropriate to use the simple observer (11) (see Figures 13 to 16) because
we obtain a much less good estimation with the high-gain observer (10) as it is
illustrated in Figures 6 to 8.
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370 Figure 5: Simulation of system (4) and its high-gain observer (10) when the
output measurements are corrupted by noise when f is extended: X2(t)(red
curve) and its estimate X̂2(t) (blue curve) delivered by the high-gain observer
(10)
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Figure 6: Simulation of system (4) and its high-gain observer (10) when the
output measurements are corrupted by noise when f is extended: x3(t)(red
curve) and its estimate x̂3(t) (blue curve) delivered by the high-gain observer
(10)
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375 Figure 7: Simulation of system (4) and its high-gain observer (10) when the
output measurements are corrupted by noise when f is extended: x5(t)(red
curve) and its estimate x̂5(t) (blue curve) delivered by the high-gain observer
(10)
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Figure 8: Simulation of system (4) and its high-gain observer (10) when the
output measurements are corrupted by noise when f is extended: x7(t)(red
curve) and its estimate x̂7(t) (blue curve) delivered by the high-gain observer
(10)

In the following illustrative figures (Figure 9 to Figure 11), we verify the effec-
tiveness of the proposed simple observer defined by system (11).380
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Figure 9: Time evolution of the number of infected humans X2(t) (red curve)
given by (5) and its estimate X̂2(t) (blue curve) delivered by the simple observer
(11).
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Figure 10: Time evolution of the number of suceptible snails x3(t) (red curve)
given by (5) and its estimate x̂3(t) (blue curve) delivered by the simple observer
(11).
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Figure 11: Time evolution of the number of infected snails x5(t) (red curve)
given by (5) and its estimate x̂5(t) (blue curve) delivered by the simple observer
(11).
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Figure 12: Time evolution of the number of infected mammals x7(t) (red curve)
given by (5) and its estimate x̂7(t) (blue curve) delivered by the simple observer
(11).
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To show the effectiveness of the observer in noise compensation, simulation
results are included in Figures 13 to 15. We have added to the output mea-390

surements X2(t) of the continuous system, 5% of a normal gaussian noise with
mean zero and standard deviation one. These results show that estimation
populations are weakly affected by the noise.
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Figure 13: Infected humans population X2(t) (red curve) and its estimate X̂2(t)
(blue curve) delivered by the simple observer (11) when the output measure-
ments are corrupted by noise.
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Figure 14: Susceptible snails population x3(t) (red curve) and its estimate x̂3(t)
(blue curve) delivered by the simple observer (11) when the output measure-
ments are corrupted by noise.
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Figure 15: Infected snails population x5(t) (red curve) and its estimate x̂5(t)
(blue curve) delivered by the simple observer (11) when the output measure-
ments are corrupted by noise.400
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Figure 16: Infected mammals population x7(t) (red curve) and its estimate
x̂7(t) (blue curve) delivered by the simple observer (11), for system (5) when
the output measurements are corrupted by noise.

The time histories of the estimates of the bounds on X = (X2, x3, x5, x7),405

the states of the system (3), under the constraint that the transmission rates
t32, t37, t65 are uncertain, are given in Figure 17, Figure 18, and Figure 19. The
partially unknown parameters vector is

p = [t15, t32, t37, t65]
T ∈ [t−15, t

+
15]× [t−32, t

+
32]× [t−38, t

+
38]× [t−75, t

+
75]

= [1.23 10−7, 2.23 10−7]× [0.05 10−7, 1.05 10−7]

×[1.00 10−7, 2.00 10−7]× [0.02 10−7, 1.02 10−7].

Model output is taken as y(t) = X2(t) and the maximal measurement error is
b = ∓20% ym(∞) where ym(∞) is a nominal value. A gain vector is taken as410

KT = (3, 0, 0, 0). These last figures demonstrate that even with loose initial
estimations on each bounds of unmeasured variables, we obtain estimates of the
uncertainty intervals with a reasonable accuracy, the results keep on showing
that the true states are always inside the estimated bounds and the interval
estimation converge to a box whose width depends itself on those measurements415

error bounds.
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Figure 17: Measures of infected humans population size X2(t) (green curve) and
its lower (red) and upper (blue) bounds estimated with interval observer (16)
in presence of uncertainty on the measurements with b = ±20% ym(∞).
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Figure 18: Measures of latent snails population size x4(t) (green curve) and its
lower (red) and upper (blue) bounds estimated with interval observer (16) in
presence of uncertainty on the measurements with b = ±20% ym(∞).420
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Figure 19: Measures of infected snails population size x5(t) (green curve) and
its lower (red) and upper (blue) bounds estimated with interval observer (16)
in presence of uncertainty on the measurements with b = ±20% ym(∞).
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Figure 20: Measures of infected mammals population size x7(t) (green curve)
and its lower (red) and upper (blue) bounds estimated with interval observer
(16) in presence of uncertainty on the measurements with b = ±20% ym(∞).
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7. Conclusion425

In this paper some nonlinear observers are designed for a mathematical
model describing the propagation of schistosomiasis infection among humains,
snails and mammalian populations. These observers allow to dynamically esti-
mate the total population size of snails and mammalians (susceptibles as well as
infected) using the size of infected humains which is the only available informa-430

tion. More precisely a high-gain observer, a simple nonlinear observer and an
interval observer are developed. To test the effectiveness of these observers was
tested by performing some numerical simulations that show that the estimates
x̂(t) delivered by the various observers converge quite fast to the true states
x(t). The convergence of the high-gain observer is the fastest one when the435

measurements are not corrupted by noise. On the other hand, in the case of
noisy measurements the estimates delivered by the high-gain observer are not
accurate anymore, while the simple observer gives good estimates with a good
convergence rate. Indeed, the high-gain observer is very sensitive to data noise
while our simple observer is more robust.440

Both the high-gain and the simple observers assume that all the model pa-
rameters are precisely known. For the case where the parameters are only
known to belong to some bounded intervals, we designed an interval observer
to cope with these uncertainties in the model. This interval observer has very
good convergence properties and correctly predicts the dynamic bounds for the445

unmeasured variables even when measurements are corrupted by noise.
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Appendix A Proof of Proposition 4.1: the positivity of li, i =
1, ..., 3

Here we shall prove that the derivative of V (e) is negative definite. Thanks
to Gauss-Lagrange algorithm, V̇ (e) can be written as follows:450

V̇ (e) = −
(

(1 + a2) (e2 + F2(e4, e5))2 + l1 (e4 + F4(e5, e7))
2

+ l2 (e5 + F5(e7))
2

+ l3 e
2
7

)
.

where:

l1 = 1 + a4 −
b24

2

4(1 + a2)
, l2 = 1 − b25

2

4(1 + a2)
−

(
b24 b25

4(1 + a2)
− b45

2

)2

1 + a4 −
b224

4(1 + a2)

and

l3 = 1+a7−
b247

4

(
1 + a4 −

b24
2

4(1 + a2)

)−


(
b24b25

4 + 4 a2
− b45

2

)
b47

2

(
1 + a4 −

b24
2

4(1 + a2)

) +
b57

2


2

1− b25
2

4 + 4 a2
−

(
b24b25

4 + 4 a2
− b45

2

)2

(
1 + a4 −

b24
2

4(1 + a2)

)
.

And:

F2(e4, e5) =
b24

2 (a2 + 1)
e4 −

b25

2 (a2 + 1)
e5,455

F4(e5, e7) =

 b24 b25

4(a2 + 1)

(
− b224

4(a2 + 1)
+ a4 + 1

) − b45

2

(
− b224

4(a2 + 1)
+ a4 + 1

)
 e5

+
b47

2

(
− b224

4(a2 + 1)
+ a4 + 1

) e7

=

(
b24 b25

4 (a2 + 1) l1
− b45

2 l1

)
e5 +

b47

2 l1
e7,
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F5(e7) =

−
b47

(
b24 b25

4 (a2 + 1)
− b45

2

)
2

(
− b224

4(a2 + 1)
+ a4 + 1

) − b57

2

−

(
b24b25

4(a2 + 1)
− b45

2

)2

− b224

4(a2 + 1)
+ a4 + 1

− b225

4(a2 + 1)
+ 1

e7

=
1

l2

−b47

(
b24 b25

4 (a2 + 1)
− b45

2

)
2 l1

− b57

2

 e7.

Let us prove that l1, l2 and l3 are positives with assumption 4.1:

We recall the following quantities:

a2 =
x5NSt15

L1 + r12
; a4 =

X2t32 + x7NM t37

b3 + r54
; a7 =

x5NSt65

b6
;460

b24 =
(−1 + x̂4 + x̂5) t32

b3 + r54
; b45 =

r54

b3
− X2t32 + x7NM t37

b3 + r54
;

b47 =
(−1 + x̂4 + x̂5)NM t37

b3 + r54
; b57 =

(1− x̂7)NSt65

b7
; b25 =

(
−X̂2 +NH

)
NSt15

L1 + r12
.

We have

a7 ≤
NSt65

b7
; − NM t37

b3 + r54
≤ b47 ≤

NM t37

b3 + r54
; −NSt65

b7
≤ b57 ≤

NSt65

b7
;465

r54

2 b3
−1

2

NHt32 +NM t37

b3 + r54
≤ 1

2
b45 ≤

1

2

r54

b3
; 0 ≤ b25

2
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≤ 1

4

(
NH NS t15
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)2

4 ≤ 4(1 + a2) ≤ 4(1 +
NSt15

L1 + r12
) ⇒ 1

4

(
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)−1

≤ 4 (1 + a2)
−1 ≤

1

4
;470
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? first case: Iff b45 ≥ 0485
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We define

X :=
NHNSt15t32

(L1 + r12) (b3 + r54)
and Y :=

r54

b3
− NHt32 +NM t37

b3 + r54

We choose L1 ≥ 0 so that X ≤ 1/2.
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−
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+
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+
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Since
NM t37

b3 + r54
≤ NHt32 +NM t37

b3 + r54
≤ r54

b3

we get

l3 ≥ 1 + a7 −
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3
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r54
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? Second case: b45 ≤ 0 ⇒ Y ≤ b45 ≤ 0

We get

−1

2

r54

b3
≤ V1 :=

b24 b25

4(1 + a2)
− 1

2
b45 ≤

X

4
− Y

2

If |Y | ≤ r54
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b24 b25
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X

4
+
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505

It follows that 0 ≤ V 2
1 ≤
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X

4
+
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+
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V 2
2 ≤

V1 b47

2
3

4

+
b57

2


2

≤
(

2

3

(
NM t37
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)(
X

4
+
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+
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So

l3 ≥ 1 + a7 −
1

3

(
NM t37

b3 + r54

)2

− V 2
2

l2
l3 ≥ 1 + a7 −

1

12
− 400

1107
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And finally we give here the full expression of R(e, x̂) =

(
R1,1 R1,2

R2,1 R2,2

)
where:

R1,1 =

(
− 1

2
(e5 + 2x̂5)NSt15 0

− 1
2
(e4 + e5 + 2(x̂4 + x̂5 − 1))t32

1
2

(
(−e2 − 2X̂2)t32 − (e7 + 2x̂7)NM t37

) )
525

R1,2 =

(
− 1

2

(
e2 + 2X̂2 − 2NH

)
NSt15 0

1
2

(
(−e2 − 2X̂2)t32 − (e7 + 2x̂7)NM t37

)
− 1

2
(e4 + e5 + 2(x̂4 + x̂5 − 1))NM t37

)

R2,1 =

(
0 r54
0 0

)
; R2,2 =

(
0 0

− 1
2
(e7 + 2x̂7 − 2)NSt65 − 1

2
(e5 + 2x̂5)NSt65

)
.

Appendix B Existence of a finite positive real number M satisfying
condition (13)

We have p = (t15, t32, t37, t65) where t15 ∈ [t−15, t
+
15], t32 ∈ [t−32, t

+
32], t37 ∈

[t−37, t
+
37], t65 ∈ [t−65, t

+
65], and x = (X2, x4, x5, x7) ∈ D = [0, NH ]× [0, 1]× [0, 1]×530

[0, 1].
We recall the following vectors :

ψ =


t15 (NH −X2)NS x5

(t32X2 + t37NMx7) (1− x4 − x5)
0

t65NSx5 (1− x7)

 ,

ψ− =


t−15 (NH −X2)NS x5(

t−32X2 + t−37NMx7

)
(1− x4 − x5)

0
t−65NSx5 (1− x7)


and

ψ+ =


t+15 (NH −X2)NS x5(

t+32X2 + t+37NMx7

)
(1− x4 − x5)

0
t+65NSx5 (1− x7)

 .
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We have the following inequalities :535

t−15 (NH −X2)NS x5 ≤ t15 (NH −X2)NS x5 ≤ t+15 (NH −X2)NS x5,

as we have (NH −X2) ≥ 0.(
t−32X2 + t−37NMx7

)
(1− x4 − x5) ≤ (t32X2 + t37NMx7) (1− x4 − x5)

≤
(
t+32X2 + t+37NMx7

)
(1− x4 − x5) ,

since (1− x4 − x5) ≥ 0.

t−65NSx5 (1− x7) ≤ t65NSx5 (1− x7) ≤ t+65NSx5 (1− x7) , due to (1− x7) ≥ 0.

In this manner ψ− ≤ ψ ≤ ψ+ for all x ∈ D.
Let us prove now the last item of the condition (13). We have

| t−15 (NH −X2)NS x5 − (t+15 (NH −X2)NS x5) |≤ (NH −X2) NS x5

(
t+15 − t

−
15

)
≤ NH NS

(
t+15 − t

−
15

)
.

|
(
t−32X2 + t−37NMx7

)
(1− x4 − x5)−

((
t+32X2 + t+37NMx7

)
(1− x4 − x5)

)
|

≤ (1− x4 − x5) | x2

(
t−32 − t

+
32

)
+NMx7

(
t−37 − t

+
37

)
|

≤ x2 | t−32 − t
+
32 | +NM x7 | t−37 − t

+
37 |

≤
(
t+32 − t

−
32

)
+NM

(
t+37 − t

−
37

)
.

| t−65NSx5 (1− x7)− (t+65NSx5 (1− x7)) | ≤ NS x5(1− x7) | t−65 − t
+
65 |

≤ NS
(
t+65 − t

−
65

)
.

Consequently we set

M := max{NH NS
(
t+15 − t

−
15

)
,
(
t+32 − t

−
32

)
+NM

(
t+37 − t

−
37

)
, NS

(
t+65 − t

−
65

)
}.
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