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Abstract—The aim of our work is to estimate the camera
motion from RGB-D images in a dynamic scene. Most of the
existing methods have a poor localization performance in such
environments, which makes them inapplicable in real world
conditions. In this paper, we propose a new dense visual odometry
method that uses RANSAC to cope with dynamic scenes. We
show the efciency and robustness of the proposed method
on a large set of experiments in challenging situations and
from publicly available benchmark dataset. Additionally, we
compare our approach to another state-of-art method based on
M-estimator that is used to deal with dynamic scenes. Our method
gives similar results on benchmark sequences and better results

on our own dataset.
Fig. 1. 3D coloured map produced by our method from a hand-held camera

in a static scene.
I. INTRODUCTION

Visual odometry is a fundamental challenge in robotics and
computer vision. It consists in localizing a robot using only
images coming from an on-board camera sensor. For human-
robot interaction and assistance tasks, robot localization is a
fundamental problem to solve in order for the robot to interact
and assist the person.

There exists a variety of approaches for visual odometry,
including sparse and dense methods. Sparse methods (also
called feature based) only use a selection of features from
the camera images which ease real-time robot localization.
In contrast, dense methods (also called direct or global) use
on the entire camera image for localization and do not rely
on any feature extraction. Most existing approaches for visuatig. 2. 3D coloured map produced by our method from a hand-held camera
odometry assume scenes are stafichese methods result in in a dynamic scene. The map displays the static (inliers) and mobile (outliers)
poor robot localization performances in dynamic environment#eggﬁfj t'r:‘e”::i;;rgfgev’wfnaﬂfg Z':anﬁg'j‘fn‘g“i,ﬁ}ﬁé?ﬁ dTirsweatgictgr:g; uc:?tghlr
because they can n(.)t differentiate betwee.n the r_nOt'c_"_“ of th ethod can be inferred from the good quality of the. reconstruction of the
robot and that of objects and persons. It is that inability thabackground (inliers) compared to gure 1.
makes these methods inapplicable in dynamic environments.

A visual odometry method is called 'robust' if it is able to . . : . : . .
accurately estimate the camera position in a dynamic enviroan our approach is validated in section IV with an intensive set

ment, where outliers pixels must be excluded in order to ge?f experiments in challenging situations with persons moving

accurate estimation. Moving persons, lighting changes generaFé frzomnmri movm%camferrarth al_?r? V?I'dtate gturirbmt?trr]lOde\t”r’:ih
outliers that must be eliminated when estimating the motion o enchmark sequences from [5]. The last co ution of this

the camera. To this end, a robust dense visual odometry meth ﬁg)_grrt'fggjsf%m%%gio(nH3[)2?; t';‘:ttZ‘;g;OM?QS?:T'}S;'IB?SS::";OZ
is proposed in this paper. The main contribution of this work P

is the introduction of a new dense visual odometry method"’Ith outliers.
that uses RANSAC [4] algorithm to cope with dynamic scenes
which is described in section Ill. The accuracy and robustness 1. RELATED WORK

Lwhere there are no changes in lighting conditions, no moving persons and Visual odometry EStimat?S the' robo_t positipn from camera
objects in the scene images only. It has been widely investigated in the literature.



There exists a variety of approaches for visual odometry, [1l. METHOD

including sparse and dense methods. In this section we describe the framework for robustly

estimating the trajectory of the RGB-D camera in a dynamic

Sparse visual odometry methods use visual features extraenvironment. The framework is based on the Lucas-Kanade

tion such as Harris [6], FAST [7], SIFT [8] or SURF [9]. These image alignment algorithm adapted to RGB-D cameras and
features are tracked and used to estimate the camera moticam optimized RANSAC method for outliers rejection.

To cope with dynamic scenes, RANSAC is used to remove

inconsistent features matches [10] [11] [12]. Visual odometry aims to estimate the motion of the camera

between two consecutive imagds,(1,2) by minimizing the
intensity error between them.

Dense methods use all pixels in the image for registra- . .
tion. The rst dense odometry methods were introduced by . e dene the non-linear least square cost function that
[13]. These methods use the Lucas-Kanade framework [1jninimizes the mter;(sny error between the two images:
for image alignment, by minimizing the photo-metrical error _ . 2.
between two consecutive images. [14] discussed the Lucas- E()= A (2P (P (1)
Kanade framework and provides various optimizations of the
algorithm. Alternatively, ICP based methods, as introducedvhere is the camera motio R® that represents the linear
by [15], minimize a geometrical error distance. ICP methodsand angular velocity of the camera, anf; p;) is the warping
require to perform, at each iteration of the algorithm, anfunction that projects each pixg from I, to I,. Equation
expensive nearest neighbour search. [16] uses a KD-Tree tb can be solved using an iterative least square method. The
accelerate the nearest neighbour search. [17] uses a cache $oilution to the equation 1 is equal to:
accelerating KD-tree based ICP.

= argmin (E()):
Recently after the release of the low cost RGB-D cameras
(e.g. Kinect, Asus Xtion), indoor visual odometry has become  Equation 1 is linearized and solved iteratively. For more
an active eld in the research area of robotics and computer Vigetails on how to solve it we refer the reader to the following

sion. .Newcombe et al. [18] introduced KinectFusion deVeIOpe apers [23] [2] In the next section we discuss how the Warping
by Microsoft for the Kinect SDK, the system uses a methodiynction is built.

derived from the ICP algorithm to align the whole image to the
scene model. Microsoft introduced a real-time implementatior)A
of the ICP algorithm using GPGPU technology. Whelan et al. ~
[19] proposed an extension to KinectFusion by integrating ICP  In this section, the different steps for building the warp
and dense RGB-D mapping and proposes a least-square sofunction in equation 1 are described brie y. We refer the reader
tion that minimizes both the RGB-D and ICP cost functions.to the following paper [2] for more details.

The authors claims the robustness of their method in dynamic Th ina function! i tructed b t back-
scenes but it has not been shown in their paper. Forster, et g, "¢ Warping function: IS constructed by rst bac
[20] introduced a robust semi-dense visual odometry algorithnR ©/€Cting €ach pixep(u;v) to a 3D pointP(X;Y;Z; 1) in
that does not require feature extraction and matching. HowevéEFIe coordinate frame. ofy. This is possible using the depth
this method was implemented for monocular RGB camerd a9 of the camera:
only, and hence it requires external sensor or prior scene

Building the Warp function

(U )

knowledge to provide metric reconstruction. Tykkala et al. [3] X = R Z(p);
proposed a dense method for RGB-D cameras that uses ICP. v )
Following the same line, Audras et al. [21] proposed a robust Y =—F7 Z(p);
dense method that estimates the motion of an RGB-D camera fy

by minimizing the photo-metrical error between two images. Z=Z(p);

To achieve robustness in dynamic environments, these tw
methods use a weight function based on robust statistics [22)]
Kerl et al. [23] compared different robust functions (Huber,
Tukey, T-Distribution).

hereZ (p) is the depth of the pixgb fetched from the depth
age of the camera anid;fy;cx; ¢y are the intrinsics pa-
rameters (focal and optical center respectively) of the camera.

Next, the pointP is projected to the coordinate framelof
éJsing the rigid body transformation that includes the rotation

It has been shown in [24] and [25] that dense method .
gind translation:

outperform feature-based. In this paper, we use a direct visu
odometry method similar to the one used in [21] to estimate

the camera motion. However, instead of using robust weight PO=T P:

functions to achieve robustness, we use a RANSAC imple- ) _

mentation that ef ciently eliminates outliers. The robustness ofl h€ homogeneous representationTofs written as follow:

the proposed approach is conducted with a set of experiments R t

in challenging situations and from benchmark sequences. Ad- 0o 1°

ditionally, we compare our method to Huber robust weight

function and we show that our approach gives similar resultsvith R is a3 3 matrix that represents the rotation ani a

and in some situations it gives better estimates. 3 1 vector that represents the translation. The rotation can be



expressed with 3 Euler angular rotations only. We use the Li¢ghe highest number of inliers. The nal selected hypothesis is
algebra representation of T that represents the transformationr€ ned by re-estimating the model parameters from its inliers.
with a twist coordinates with 6 degrees of freedom (rotation

+ translation): The original RANSAC algorithm determines the number of

iterationsk required to obtain at least one non-contaminated
= (W1 Wp; W3; V1;Vo; V3): set ofn samples. We de n@ as the probability that only inliers
) _ . are selected by the algorithm, andbe the probability that a
wherew andv are the angular and linear velocity respectlvely.Samme is an outlier. Hencél w)" gives the probability that
The nal transformation matrixT is obtained from the expo- the algorithm only selects inliers. White (1 w)" is the
nential map: probability that a least one of the selectegoints is outlier.

T =exp("); For the allk iterations,(1 (1 w)")¥ gives the probability
that the algorithm never choose a sengboints which all are
inliers. Hence(l (1 w)")k is equal tol p. This can be
A w v written as follow:

= 2R 4
@ @ wHk=1 p

where " is de ned as follow:

0 O

with W a skew-symmetric matrix equal to:
! The number of iterationk is equal to:

0 W3 wy °
w= ws O wi 2R3 log(1 p)
Wo W 0 k= : )
2 1 logl (1 w)")
and: I
Vi Generally, the best performance and speed are achieved
V= Vy whenn is equal to the minimum number of points to generate

V3 a hypothesis. For instance, in the line tting problemz= 2

is the minimum number of points to produce a line. How-

ever, Rosten et al. [26] showed that the performance of the
RANSAC algorithm can be improved by selecting more than
the minimal number of samples when working with noisy data.

Finally, the transformed poirfe® is projected to screen space
to get the nal warped pixel coordinatgs(u®v9 using the
following equations:

0
ul= fxiox Cx; 2) Implementation:Equation 1 has 6 unknowns (linear and
z angular velocities). In the Lucas-Kanade framework, In order
o_ fy YO ) to estimate the velocity of a pixel, the authors use a patch
R T of of 3 3 pixels around the center one to over-determine
the system. Otherwise equation 1 can not be solved. This
B. Multi-resolution pyramid assumption means that all pixels within that patch have the

. L . . , ._same velocity, which is not always true.
Equation 1 is linearized and solved iteratively and this R4 y

is only valid for small values of . In order to improve the In our method, which is an extension of the Lucas-Kanade
nal estimate and to handle large translational and rotationaframework, to build a hypothesis, we need to sample, at least
movements, we construct a pyramid of RGB-D images a$ pixels (which is the minimal number of pixels to obtain an
described in [13] where each image in the pyramid is downestimate) and their neighbodr® estimate the velocity vector
sampled by a factor of 2. We start by the lowest resolutiorof the camera, which at the end gives a total of 54 pixels
and estimate the motion that will be used as initialization for

the next image in the pyramid. In conclusion, we randomly samples 6 pixels and extract

their neighbours from the image and estimates their motion
o with the Lucas-Kanade method. If the sampled pixels belong to
C. Robusti cation a static object in the scene, the estimated motion corresponds

In this section, we describe our RANSAC implementationt0 the camera motion. This process of random sampling is
to cope with dynamic scenes. In the reminder of the sectiorf,epeated a certain number of iterations and the hypothesis that

we give an overview on the RANSAC algorithm and then wenas the higher number of inliers is selected.
discuss how to implement it for dense visual odometry. As a reminder, the minimization of the cost function in

1) Background: RANSAC is an iterative method used to €guation 1 is a non-linear task because pixel intenslt@s
estimate a given model parameters using a seNoflata &€ un-related to the pixel coordinates. As described in [14],
points with outliers. The algorithm consists of two main stepsihere is no direct solution for equation 1. To solve it, Lucas-
hypothesis generation and the hypothesis evaluation. In thganade algorithm assumes that an initial estimate for the
rst phase, n data points are randomly sampled from theC@mera motion is known and then proceeds iteratively to nd
whole dataset and an hypothesis of the model is generatéf€ nhal transformation that minimizes the cost function. This
using the sampled data. This hypothesis is an estimation ¢p€ans, that in our method, each hypothesis is obtained by
the model parameters. For each generated hypOtheSiS’ a SCGIV§This process of sampling is completely different from randomly sampling
IS.Ca.‘ICUIated by counting the number (_)f mhgrs points that IIe54 pixels from the whole image, because, doing the latter, yields to a lower
within a prede ned threshold. The algorithm iterates over thes@nance that selected pixels have the same motion which means, reducing the
two steps and at the end it keeps the best hypothesis which hetgance that the RANSAC algorithm nds a non-contaminated set of samples.




; : i dataset Huber RANSAC Classic
- \
solving the non-linear least square equation 1 for the randoml Felbug 0z 0.028044 0.026854 0036899

sampled pixels. freiburg2_ desk 0.016415m | 0.018925m | 0.020270m

- ; : freiburg2 xyz 0.007809m | 0.012054m | 0.036899m
Algorithm 1 describes the different steps of the camera freiburgid)ésk_with_person 0.021134m | 0.027167 | 0.028489m
motion estimation algorithmthreshLum and threshDepth freiburg3.sitting_halfsphere | 0.027248m | 0.026507m | 0.028831m
are respectively the luminance and depth threshold for a pixel -
to be considered as an inlier in the current hypothasiis "AELEL 1007 e sauune oSS o b e
the probability that at a certain iteration, the algorithm selects '
only inliers, andw is the probability that a pixel is an outlier.

described in [5], that measures the drift of the trajec-

Algorithm 1: Camera motion estimation tory estimated by our method with respect to the ground

input : threshLum , threshDepth, p, w truth trajectory. Table | shows the root mean square error
output: (RMSE) calculated for each method. For stafreipurgl xyz
L freiburg2_desk and freiburg2 xy2 and dynamic sequences (
- log(1 p) freiburg2_desk with_personandfreiburg3 sitting_halfsphers,
log(1 (1 w)") both RANSAC and Huber methods yield very close RMSE.
» foreach imagel ¥ in pyramid| do Our method and the Huber function clearly Qutperforms the
5 bestConsensusSato g:lassp m_ethod. We also tested both methods in more challeng-
. while iterations< k do ing situations from the benchmark, Whe_re there were many per-
5 Randomly selech pixels sons moving very close to _the camera in a an open space (e.0.
. Build hypothesis usingn pixels rgbd_datase_tfre|burg3_wa|k|ng_rpy). Both methods fallc_ed on
; consensusSet 0 these sequences since the RGB-D sensor has a limited range
. ok (up to 7 meters) and it is very sensitive to noise when we
8 foreach pixel p; in | K do K surpass half that range. According to Khoshelham and Elberink
o residuallum = '2(9 (ipi)) | 1(kpi) [27], the accuracy of the Kinect sensor is degraded at larger
10 residualDepth = Z3((! (;pi))  Z*1(pi) distances, and thus the range must be reduced at least to
if (residualLum< threshLum) and 3 or 4 meters for indoor localization applications. Based
(residualDepth< threshDepththen on this conclusion, in our experiments, we have ltered the
u | increment size of consensusSet input images by pruning the pixels deeper than 4 meters.
- For instance, in the gure 3(a) most of the image (upper
iz 'fL(CkfenssteC%Snf‘eifugg;z%gﬂzgﬂzﬂzgi?e" part) is not used because its depth is higher than 4 meters,
L thus reducing the number of exploitable pixels to almost the
14 = Build hypothesis using consensusSet half. In gure 3(b), unused pixels are displayed in black.
15 use as initial guess for the next pyramid level We calculated the percentage of unused pixels and we _found
1 rgturn that they represemt9:23% of the image. In such challenging

conditions, both our method and the Huber method fail because
of the extremely high number of outliers in the image and the

very low percentage of the inliers due to the reduced camera
IV. EVALUATION range. Such conditions are still an open challenge for robot
localization.

The rst part of the evaluation consists of using the TUM
RGB-D benchmark [5] to compare our method to the Huber
robust function using the relative pose error (RPE) as metric.
The second part of the evaluation consists on testing our
method in a real environment. Finally, execution speed of the
method is discussed.

A. Experimental setup

In all experiment, we have xed = 0:99, w = 0:3
which mean that we assume that there is no more 80 (@) (b)
of outliers pixels in the image anthreshLum = 30 . The _ _
threshI_Depth : 5.Cm' Level O of the pyramid has the lowest B%d_daféselfreiburgS_?/\)/aIkianiE;C olfma?hee tt)aeﬁec%marfli?m b) s%?rl::rrllce
resolution which is equal te 80 60 pixels. Please note that representation showing unused pixels in black (pixels that are far than
in the next, classic method refers to the non-linear least squaremeters from the camera). Those pixels repredér23% of the image.
solution without RANSAC.

B. Evaluation with TUM RGB-D benchmark C. Evaluation with real experiments

In this part, our approach is evaluated on static and We evaluated our approach using multiple experiments in a
dynamic sequences using a benchmark dataset [5]. To thiynamic environment. Table Il summarizes all sequences used
goal, we used the relative pose error (RPE) metric, a#n our experiments.



Sequence hame Camera position Scene description|
seq0 Hand-held camera Static scene
seql Fixed camera One person moving
seq2 Camera on pan-tilt moto; One person moving
seq3 Camera on pan-tilt motor; Two persons moving
TABLE II. SEQUENCES OF DIFFERENT EXPERIMENT.S

We start with a xed camera and we show that our method
is able to robustly eliminate outliers and outperforms the @) ()
classic method (classic method is the non-linear least square
without RANSAC). Next, we evaluate the method with a
camera mounted on a pan-tilt motor rotating around vertical
axis. Then, we compare the RANSAC method to the Huber
robust function and we show that our method gives better
estimates. We also show qualitative results from a hand-held
camera.

1) Fixed camera in a dynamic environmenfhe rst
experiment consists of using a xed camera in a dynamic © (@

environment. A person is ConthOUS|y moving In front of the Fig. 4. a) and c): the subtraction of two consecutive images. b) and d): inliers

camera. This experiment is used to verify that our approachixels (in blue) and outliers pixels (in green) returned by our method.
detects moving objects as outliers. With static camera, moving
objects are easily obtained by subtracting two consecutive
images. 3) Hand-held camera:ln this section, we show the ca-
pacity of the system to efciently eliminates outliers from
Figure 4(a) and 4(c) show the subtraction of two conseca multiple dynamic scenes with a hand-held camera. The
utive images used as ground truth. White pixels are outlierscenes consists of a subject moving fast and jumping in front

that correspond to the motion of the person. In gures 4(b)of a moving camera, as shown in Fig. 7(a) and Fig. 7(c)
and 4(d), green pixels correspond to outliers detected by thgspectively.

algorithm, blue pixels are inliers. Figure 4 shows that our . .
approach ef ciently eliminates outliers. Figure 7 shows the outliers detected by the method at

different time of the sequence. Figure 7(a) and 7(c) correspond
Figure 5(a) measures the distance error between the estb the current imagel ¢) taken at different time steps from the
mated camera positiorx;(y; z) and the real position0( 0; 0). hand-held sequence. Figure 7(b) and 7(d) correspond to the
RANSAC has a negligible error while the drift of the classic outliers detected by our method.

method is very high and the error reactgicm. Additionally, we built a 3D map from a hand-held sequence

Figures 5(b) and 5(c) show the estimated camera orientsS Shown in gure 2. This map displays both outliers (vertices
tion on X and Y axis. The classic method has a very hig corresponding to a moving person) a_nd inliers (vertices that
error that exceeds 30 degrees on vertical Y-axis. The rotatioR€/ong to the static background) vertices. The reconstructed

on Z-axis is almost zero for RANSAC and reaches 3 degree%:ap obtained from the RGB-D images qualitatively proves
for the classic method. that the localization of the camera is accurate.

This map was built to show that our method is able
to accurately localize the camera in a dynamic scene. This
is inferred by the fact that the background of the scene is
correctly mapped (with respect to gure 1).

2) Camera on a pan-tiit motor:In this experiment, the 4) Comparison against Huber robust functiorin this
camera was mounted on a pan-tilt motor rotating around theection we compare our method to the Huber robust function.
vertical axis with a step of two degrees per second. One .
person was moving in front of the camera. Figure 6 shows the Figure 8, 9 and 10 show thf?‘t our approach has lower error
estimated trajectory of RANSAC and classic method. Figureé?d@inst the Huber robust function.

6(a) measures the distance error between the estimated camera

As shown in gure 5, RANSAC highly improves the
tracking stability. The drift of the classic method (without
RANSAQC) is very high.

position &;y;z) and the real camera positio®; Q; 0). The V. EXECUTION SPEED
error of the classic method is very high and exceeds 45 cm Qne of the disadvantages of RANSAC is that the time
while RANSAC has a very low one close to zero. it takes to nd the best model parameters suffers from high

Figure 6(b) compares the angular otation around the vertiy “iich HER SR LR IR, IO PP E S
cal axis estimated by both methods. The estimated orlentatlogOre processor in dynamic scenes. Many parts of the algorithm
of RANSAC (red) is very close to the reference (green) and itsCan be accelerated on CPU and/dr GPU
hard to distinguish between them. For the classic method, thé '

estimated angular rotation has a very high drift. The reference In RANSAC, the processing time for each input image
trajectory is obtained from the pan-tilt motor. depends on the percentage of outliers. Table Il summarizes



@ (b)

(a) Trajectory error’:z X2+ y2 + 72),

© (d)

Fig. 7. Images taken at different time steps from a hand-held sequence
showing that outliers (white pixels) that correspond to the motion of the

(b) Camera rotation error on x axis. moving person are ef ciently eliminated by our method.

(c) Camera rotation error on y axis.

Fig. 5. Comparison of trajectory error feeql( xed camera) with RANSAC
method in red and the classic method (No RANSAC) in blue. Please note that
b) and c¢) do not have the same Y axis range.

Fig. 8. Camera trajectory error faeqlof RANSAC method and Huber
function.

VI. CONCLUSION AND FUTURE WORK

We proposed a new method to robustly estimates the
camera motion in a dynamic environment based on RANSAC
algorithm. We showed with an intensive set of experiments
and with benchmark sequences the robustness of the approach.
We also demonstrated that our method is accurate and robust.
We compared our approach with a state-of-the art method for
outliers rejection based on M-estimators. In the future, we
Fig. 6. Comparison of estimated trajectory fmq2with RANSAC in red  want to extend our previous method [28] which extracts mobile

and classic method in blue. On b) the estimated angular rotation obtained byhjects and persons in static scene to a dynamic one.
RANSAC is very close to the ground truth (in green).

(a) Trajectory error. (b) Estimated angular rotation on ver-
tical axis.
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