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Abstract—The aim of our work is to estimate the camera
motion from RGB-D images in a dynamic scene. Most of the
existing methods have a poor localization performance in such
environments, which makes them inapplicable in real world
conditions. In this paper, we propose a new dense visual odometry
method that uses RANSAC to cope with dynamic scenes. We
show the efficiency and robustness of the proposed method
on a large set of experiments in challenging situations and
from publicly available benchmark dataset. Additionally, we
compare our approach to another state-of-art method based on
M-estimator that is used to deal with dynamic scenes. Our method
gives similar results on benchmark sequences and better results
on our own dataset.

I. INTRODUCTION

Visual odometry is a fundamental challenge in robotics and
computer vision. It consists in localizing a robot using only
images coming from an on-board camera sensor. For human-
robot interaction and assistance tasks, robot localization is a
fundamental problem to solve in order for the robot to interact
and assist the person.

There exists a variety of approaches for visual odometry,
including sparse and dense methods. Sparse methods (also
called feature based) only use a selection of features from
the camera images which ease real-time robot localization.
In contrast, dense methods (also called direct or global) use
on the entire camera image for localization and do not rely
on any feature extraction. Most existing approaches for visual
odometry assume scenes are static1. These methods result in
poor robot localization performances in dynamic environments
because they can not differentiate between the motion of the
robot and that of objects and persons. It is that inability that
makes these methods inapplicable in dynamic environments.

A visual odometry method is called ’robust’ if it is able to
accurately estimate the camera position in a dynamic environ-
ment, where outliers pixels must be excluded in order to get
accurate estimation. Moving persons, lighting changes generate
outliers that must be eliminated when estimating the motion of
the camera. To this end, a robust dense visual odometry method
is proposed in this paper. The main contribution of this work
is the introduction of a new dense visual odometry method
that uses RANSAC [4] algorithm to cope with dynamic scenes
which is described in section III. The accuracy and robustness

1where there are no changes in lighting conditions, no moving persons and
objects in the scene

Fig. 1. 3D coloured map produced by our method from a hand-held camera
in a static scene.

Fig. 2. 3D coloured map produced by our method from a hand-held camera
in a dynamic scene. The map displays the static (inliers) and mobile (outliers)
vertices. In this image, we aim to show that our method is able to accurately
localize the camera when there are moving objects. The accuracy of our
method can be inferred from the good quality of the reconstruction of the
background (inliers) compared to figure 1.

of our approach is validated in section IV with an intensive set
of experiments in challenging situations with persons moving
in front of a moving camera. We also validate our method with
benchmark sequences from [5]. The last contribution of this
paper is the comparison of our method to an existing state-of-
the-art robust function (Huber) that uses M-estimators to cope
with outliers.

II. RELATED WORK

Visual odometry estimates the robot position from camera
images only. It has been widely investigated in the literature.



There exists a variety of approaches for visual odometry,
including sparse and dense methods.

Sparse visual odometry methods use visual features extrac-
tion such as Harris [6], FAST [7], SIFT [8] or SURF [9]. These
features are tracked and used to estimate the camera motion;
To cope with dynamic scenes, RANSAC is used to remove
inconsistent features matches [10] [11] [12].

Dense methods use all pixels in the image for registra-
tion. The first dense odometry methods were introduced by
[13]. These methods use the Lucas-Kanade framework [1]
for image alignment, by minimizing the photo-metrical error
between two consecutive images. [14] discussed the Lucas-
Kanade framework and provides various optimizations of the
algorithm. Alternatively, ICP based methods, as introduced
by [15], minimize a geometrical error distance. ICP methods
require to perform, at each iteration of the algorithm, an
expensive nearest neighbour search. [16] uses a KD-Tree to
accelerate the nearest neighbour search. [17] uses a cache for
accelerating KD-tree based ICP.

Recently after the release of the low cost RGB-D cameras
(e.g. Kinect, Asus Xtion), indoor visual odometry has become
an active field in the research area of robotics and computer vi-
sion. Newcombe et al. [18] introduced KinectFusion developed
by Microsoft for the Kinect SDK, the system uses a method
derived from the ICP algorithm to align the whole image to the
scene model. Microsoft introduced a real-time implementation
of the ICP algorithm using GPGPU technology. Whelan et al.
[19] proposed an extension to KinectFusion by integrating ICP
and dense RGB-D mapping and proposes a least-square solu-
tion that minimizes both the RGB-D and ICP cost functions.
The authors claims the robustness of their method in dynamic
scenes but it has not been shown in their paper. Forster, et al.
[20] introduced a robust semi-dense visual odometry algorithm
that does not require feature extraction and matching. However
this method was implemented for monocular RGB camera
only, and hence it requires external sensor or prior scene
knowledge to provide metric reconstruction. Tykkala et al. [3]
proposed a dense method for RGB-D cameras that uses ICP.
Following the same line, Audras et al. [21] proposed a robust
dense method that estimates the motion of an RGB-D camera
by minimizing the photo-metrical error between two images.
To achieve robustness in dynamic environments, these two
methods use a weight function based on robust statistics [22].
Kerl et al. [23] compared different robust functions (Huber,
Tukey, T-Distribution).

It has been shown in [24] and [25] that dense methods
outperform feature-based. In this paper, we use a direct visual
odometry method similar to the one used in [21] to estimate
the camera motion. However, instead of using robust weight
functions to achieve robustness, we use a RANSAC imple-
mentation that efficiently eliminates outliers. The robustness of
the proposed approach is conducted with a set of experiments
in challenging situations and from benchmark sequences. Ad-
ditionally, we compare our method to Huber robust weight
function and we show that our approach gives similar results
and in some situations it gives better estimates.

III. METHOD

In this section we describe the framework for robustly
estimating the trajectory of the RGB-D camera in a dynamic
environment. The framework is based on the Lucas-Kanade
image alignment algorithm adapted to RGB-D cameras and
an optimized RANSAC method for outliers rejection.

Visual odometry aims to estimate the motion of the camera
between two consecutive images (I1, I2) by minimizing the
intensity error between them.

We define the non-linear least square cost function that
minimizes the intensity error between the two images:

E(ξ) =
∑
i

(I2((ω(ξ, pi))− I1(pi))2, (1)

where ξ is the camera motion ∈ R6 that represents the linear
and angular velocity of the camera, and ω(ξ, pi) is the warping
function that projects each pixel pi from I1 to I2. Equation
1 can be solved using an iterative least square method. The
solution to the equation 1 is ξ∗ equal to:

ξ∗ = argminξ(E(ξ)).

Equation 1 is linearized and solved iteratively. For more
details on how to solve it we refer the reader to the following
papers [23] [2]. In the next section we discuss how the warping
function is built.

A. Building the Warp function

In this section, the different steps for building the warp
function in equation 1 are described briefly. We refer the reader
to the following paper [2] for more details.

The warping function ω is constructed by first back-
projecting each pixel p(u, v) to a 3D point P (X,Y, Z, 1) in
the coordinate frame of I1. This is possible using the depth
image of the camera:

X =
(u− cx)
fx

× Z(p),

Y =
(v − cy)
fy

× Z(p),

Z =Z(p),

where Z(p) is the depth of the pixel p fetched from the depth
image of the camera and fx, fy, cx, cy are the intrinsics pa-
rameters (focal and optical center respectively) of the camera.

Next, the point P is projected to the coordinate frame of I2
using the rigid body transformation T that includes the rotation
and translation:

P ′ = T × P.

The homogeneous representation of T is written as follow:(
R t
0 1

)
,

with R is a 3× 3 matrix that represents the rotation and t is a
3×1 vector that represents the translation. The rotation can be



expressed with 3 Euler angular rotations only. We use the Lie
algebra representation of T that represents the transformation T
with a twist coordinates ξ with 6 degrees of freedom (rotation
+ translation):

ξ = (w1, w2, w3, v1, v2, v3).

where w and v are the angular and linear velocity respectively.
The final transformation matrix T is obtained from the expo-
nential map:

T = exp(ξ̂),

where ξ̂ is defined as follow:

ξ̂ =

(
ŵ v
0 0

)
∈ R4×4,

with ŵ a skew-symmetric matrix equal to:

ŵ =

(
0 −w3 w2

w3 0 −w1

−w2 w1 0

)
∈ R3×3,

and:

v =

(
v1
v2
v3

)
.

Finally, the transformed point P ′ is projected to screen space
to get the final warped pixel coordinates p′(u′, v′) using the
following equations:

u′ =
fx ×X ′

Z ′
− cx,

v′ =
fy × Y ′

Z ′
− cy.

B. Multi-resolution pyramid

Equation 1 is linearized and solved iteratively and this
is only valid for small values of ξ. In order to improve the
final estimate and to handle large translational and rotational
movements, we construct a pyramid of RGB-D images as
described in [13] where each image in the pyramid is down-
sampled by a factor of 2. We start by the lowest resolution
and estimate the motion that will be used as initialization for
the next image in the pyramid.

C. Robustification

In this section, we describe our RANSAC implementation
to cope with dynamic scenes. In the reminder of the section,
we give an overview on the RANSAC algorithm and then we
discuss how to implement it for dense visual odometry.

1) Background: RANSAC is an iterative method used to
estimate a given model parameters using a set of N data
points with outliers. The algorithm consists of two main steps:
hypothesis generation and the hypothesis evaluation. In the
first phase, n data points are randomly sampled from the
whole dataset and an hypothesis of the model is generated
using the sampled data. This hypothesis is an estimation of
the model parameters. For each generated hypothesis, a score
is calculated by counting the number of inliers points that lie
within a predefined threshold. The algorithm iterates over these
two steps and at the end it keeps the best hypothesis which has

the highest number of inliers. The final selected hypothesis is
refined by re-estimating the model parameters from its inliers.

The original RANSAC algorithm determines the number of
iterations k required to obtain at least one non-contaminated
set of n samples. We define p as the probability that only inliers
are selected by the algorithm, and w be the probability that a
sample is an outlier. Hence, (1−w)n gives the probability that
the algorithm only selects inliers. While 1 − (1 − w)n is the
probability that a least one of the selected n points is outlier.
For the all k iterations, (1− (1−w)n)k gives the probability
that the algorithm never choose a set of n points which all are
inliers. Hence, (1− (1−w)n)k is equal to 1− p. This can be
written as follow:

(1− (1− w)n)k = 1− p,

The number of iterations k is equal to:

k =
log(1− p)

log(1− (1− w)n)
. (2)

Generally, the best performance and speed are achieved
when n is equal to the minimum number of points to generate
a hypothesis. For instance, in the line fitting problem, n = 2
is the minimum number of points to produce a line. How-
ever, Rosten et al. [26] showed that the performance of the
RANSAC algorithm can be improved by selecting more than
the minimal number of samples when working with noisy data.

2) Implementation: Equation 1 has 6 unknowns (linear and
angular velocities). In the Lucas-Kanade framework, In order
to estimate the velocity of a pixel, the authors use a patch
of of 3 × 3 pixels around the center one to over-determine
the system. Otherwise equation 1 can not be solved. This
assumption means that all pixels within that patch have the
same velocity, which is not always true.

In our method, which is an extension of the Lucas-Kanade
framework, to build a hypothesis, we need to sample, at least
6 pixels (which is the minimal number of pixels to obtain an
estimate) and their neighbours2 to estimate the velocity vector
of the camera, which at the end gives a total of 54 pixels

In conclusion, we randomly samples 6 pixels and extract
their neighbours from the image and estimates their motion
with the Lucas-Kanade method. If the sampled pixels belong to
a static object in the scene, the estimated motion corresponds
to the camera motion. This process of random sampling is
repeated a certain number of iterations and the hypothesis that
has the higher number of inliers is selected.

As a reminder, the minimization of the cost function in
equation 1 is a non-linear task because pixel intensities I(p)
are un-related to the pixel coordinates. As described in [14],
there is no direct solution for equation 1. To solve it, Lucas-
Kanade algorithm assumes that an initial estimate for the
camera motion is known and then proceeds iteratively to find
the final transformation that minimizes the cost function. This
means, that in our method, each hypothesis is obtained by

2This process of sampling is completely different from randomly sampling
54 pixels from the whole image, because, doing the latter, yields to a lower
chance that selected pixels have the same motion which means, reducing the
chance that the RANSAC algorithm finds a non-contaminated set of samples.



solving the non-linear least square equation 1 for the randomly
sampled pixels.

Algorithm 1 describes the different steps of the camera
motion estimation algorithm. threshLum and threshDepth
are respectively the luminance and depth threshold for a pixel
to be considered as an inlier in the current hypothesis. p is
the probability that at a certain iteration, the algorithm selects
only inliers, and w is the probability that a pixel is an outlier.

Algorithm 1: Camera motion estimation
input : threshLum, threshDepth, p, w
output: ξ∗

1

k =
log(1− p)

log(1− (1− w)n)

2 foreach image Ik in pyramid I do
3 bestConsensusSet = 0
4 while iterations < k do
5 Randomly select n pixels
6 Build hypothesis ξ using n pixels
7 consensusSet = 0
8 foreach pixel pi in Ik do
9 residualLum = Ik2 ((ω(ξ, pi))− Ik1(pi)

10 residualDepth = Zk2 ((ω(ξ, pi))− Zk1(pi)
if (residualLum < threshLum) and
(residualDepth < threshDepth) then

11 increment size of consensusSet

12 if (consensusSet > bestConsensusSet) then
13 bestConsensusSet = consensusSet

14 ξ∗ = Build hypothesis using consensusSet
15 use ξ∗ as initial guess for the next pyramid level
16 return ξ∗

IV. EVALUATION

The first part of the evaluation consists of using the TUM
RGB-D benchmark [5] to compare our method to the Huber
robust function using the relative pose error (RPE) as metric.
The second part of the evaluation consists on testing our
method in a real environment. Finally, execution speed of the
method is discussed.

A. Experimental setup

In all experiment, we have fixed p = 0.99, w = 0.3
which mean that we assume that there is no more than 30%
of outliers pixels in the image and threshLum = 30 . The
threshDepth = 5 cm. Level 0 of the pyramid has the lowest
resolution which is equal to = 80×60 pixels. Please note that
in the next, classic method refers to the non-linear least square
solution without RANSAC.

B. Evaluation with TUM RGB-D benchmark

In this part, our approach is evaluated on static and
dynamic sequences using a benchmark dataset [5]. To this
goal, we used the relative pose error (RPE) metric, as

dataset Huber RANSAC Classic
freiburg1 xyz 0.028044m 0.026854m 0.036899m
freiburg2 desk 0.016415m 0.018925m 0.020270m
freiburg2 xyz 0.007809m 0.012054m 0.036899m
freiburg2 desk with person 0.021134m 0.027167 0.028489m
freiburg3 sitting halfsphere 0.027248m 0.026507m 0.028831m

TABLE I. ROOT MEAN SQUARE ERROR (RMSE) OF DRIFT IN METERS
PER SECOND FOR DIFFERENT METHODS FOR GROUND TRUTH DATA.

described in [5], that measures the drift of the trajec-
tory estimated by our method with respect to the ground
truth trajectory. Table I shows the root mean square error
(RMSE) calculated for each method. For static (freiburg1 xyz,
freiburg2 desk and freiburg2 xyz) and dynamic sequences (
freiburg2 desk with person and freiburg3 sitting halfsphere),
both RANSAC and Huber methods yield very close RMSE.
Our method and the Huber function clearly outperforms the
classic method. We also tested both methods in more challeng-
ing situations from the benchmark, where there were many per-
sons moving very close to the camera in a an open space (e.g.
rgbd dataset freiburg3 walking rpy). Both methods failed on
these sequences since the RGB-D sensor has a limited range
(up to 7 meters) and it is very sensitive to noise when we
surpass half that range. According to Khoshelham and Elberink
[27], the accuracy of the Kinect sensor is degraded at larger
distances, and thus the range must be reduced at least to
3 or 4 meters for indoor localization applications. Based
on this conclusion, in our experiments, we have filtered the
input images by pruning the pixels deeper than 4 meters.
For instance, in the figure 3(a) most of the image (upper
part) is not used because its depth is higher than 4 meters,
thus reducing the number of exploitable pixels to almost the
half. In figure 3(b), unused pixels are displayed in black.
We calculated the percentage of unused pixels and we found
that they represent 49.23% of the image. In such challenging
conditions, both our method and the Huber method fail because
of the extremely high number of outliers in the image and the
very low percentage of the inliers due to the reduced camera
range. Such conditions are still an open challenge for robot
localization.

(a) (b)

Fig. 3. a) Depth image taken from sequence
rgbd dataset freiburg3 walking rpy of the benchmark. b) Binary
representation showing unused pixels in black (pixels that are far than
4 meters from the camera). Those pixels represent 49.23% of the image.

C. Evaluation with real experiments

We evaluated our approach using multiple experiments in a
dynamic environment. Table II summarizes all sequences used
in our experiments.



Sequence name Camera position Scene description
seq0 Hand-held camera Static scene
seq1 Fixed camera One person moving
seq2 Camera on pan-tilt motor One person moving
seq3 Camera on pan-tilt motor Two persons moving

TABLE II. SEQUENCES OF DIFFERENT EXPERIMENTS.

We start with a fixed camera and we show that our method
is able to robustly eliminate outliers and outperforms the
classic method (classic method is the non-linear least square
without RANSAC). Next, we evaluate the method with a
camera mounted on a pan-tilt motor rotating around vertical
axis. Then, we compare the RANSAC method to the Huber
robust function and we show that our method gives better
estimates. We also show qualitative results from a hand-held
camera.

1) Fixed camera in a dynamic environment: The first
experiment consists of using a fixed camera in a dynamic
environment. A person is continuously moving in front of the
camera. This experiment is used to verify that our approach
detects moving objects as outliers. With static camera, moving
objects are easily obtained by subtracting two consecutive
images.

Figure 4(a) and 4(c) show the subtraction of two consec-
utive images used as ground truth. White pixels are outliers
that correspond to the motion of the person. In figures 4(b)
and 4(d), green pixels correspond to outliers detected by the
algorithm, blue pixels are inliers. Figure 4 shows that our
approach efficiently eliminates outliers.

Figure 5(a) measures the distance error between the esti-
mated camera position (x, y, z) and the real position (0, 0, 0).
RANSAC has a negligible error while the drift of the classic
method is very high and the error reaches 20 cm.

Figures 5(b) and 5(c) show the estimated camera orienta-
tion on X and Y axis. The classic method has a very high
error that exceeds 30 degrees on vertical Y-axis. The rotation
on Z-axis is almost zero for RANSAC and reaches 3 degrees
for the classic method.

As shown in figure 5, RANSAC highly improves the
tracking stability. The drift of the classic method (without
RANSAC) is very high.

2) Camera on a pan-tilt motor: In this experiment, the
camera was mounted on a pan-tilt motor rotating around the
vertical axis with a step of two degrees per second. One
person was moving in front of the camera. Figure 6 shows the
estimated trajectory of RANSAC and classic method. Figure
6(a) measures the distance error between the estimated camera
position (x, y, z) and the real camera position (0, 0, 0). The
error of the classic method is very high and exceeds 45 cm
while RANSAC has a very low one close to zero.

Figure 6(b) compares the angular rotation around the verti-
cal axis estimated by both methods. The estimated orientation
of RANSAC (red) is very close to the reference (green) and its
hard to distinguish between them. For the classic method, the
estimated angular rotation has a very high drift. The reference
trajectory is obtained from the pan-tilt motor.

(a) (b)

(c) (d)

Fig. 4. a) and c): the subtraction of two consecutive images. b) and d): inliers
pixels (in blue) and outliers pixels (in green) returned by our method.

3) Hand-held camera: In this section, we show the ca-
pacity of the system to efficiently eliminates outliers from
a multiple dynamic scenes with a hand-held camera. The
scenes consists of a subject moving fast and jumping in front
of a moving camera, as shown in Fig. 7(a) and Fig. 7(c)
respectively.

Figure 7 shows the outliers detected by the method at
different time of the sequence. Figure 7(a) and 7(c) correspond
to the current image (I2) taken at different time steps from the
hand-held sequence. Figure 7(b) and 7(d) correspond to the
outliers detected by our method.

Additionally, we built a 3D map from a hand-held sequence
as shown in figure 2. This map displays both outliers (vertices
corresponding to a moving person) and inliers (vertices that
belong to the static background) vertices. The reconstructed
map obtained from the RGB-D images qualitatively proves
that the localization of the camera is accurate.

This map was built to show that our method is able
to accurately localize the camera in a dynamic scene. This
is inferred by the fact that the background of the scene is
correctly mapped (with respect to figure 1).

4) Comparison against Huber robust function: In this
section we compare our method to the Huber robust function.

Figure 8, 9 and 10 show that our approach has lower error
against the Huber robust function.

V. EXECUTION SPEED

One of the disadvantages of RANSAC is that the time
it takes to find the best model parameters suffers from high
variability with respect to the upper bound. Our approach adds
little increment in complexity and runs at 2 FPS on a single
core processor in dynamic scenes. Many parts of the algorithm
can be accelerated on CPU and/or GPU.

In RANSAC, the processing time for each input image
depends on the percentage of outliers. Table III summarizes
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Fig. 5. Comparison of trajectory error for seq1 (fixed camera) with RANSAC
method in red and the classic method (No RANSAC) in blue. Please note that
b) and c) do not have the same Y axis range.
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Fig. 6. Comparison of estimated trajectory for seq2 with RANSAC in red
and classic method in blue. On b) the estimated angular rotation obtained by
RANSAC is very close to the ground truth (in green).

the minimum execution time for different experiments. For
static scenes (seq0), the system runs with a minimum of 14
FPS. This speed-up is explained by the fact that the algorithm
stops if it finds an hypothesis with ratio higher than 0.9 which
is easily satisfied for static scenes. Our method has a lower
bound equal to 2 FPS for all sequences. The classic method
(without RANSAC) and Huber function have approximately a
constant FPS equal to 25.

(a) (b)

(c) (d)

Fig. 7. Images taken at different time steps from a hand-held sequence
showing that outliers (white pixels) that correspond to the motion of the
moving person are efficiently eliminated by our method.
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Fig. 8. Camera trajectory error for seq1 of RANSAC method and Huber
function.

VI. CONCLUSION AND FUTURE WORK

We proposed a new method to robustly estimates the
camera motion in a dynamic environment based on RANSAC
algorithm. We showed with an intensive set of experiments
and with benchmark sequences the robustness of the approach.
We also demonstrated that our method is accurate and robust.
We compared our approach with a state-of-the art method for
outliers rejection based on M-estimators. In the future, we
want to extend our previous method [28] which extracts mobile
objects and persons in static scene to a dynamic one.
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