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Figure 1: Our system can be used to populate a large city like environment such as the Wall Street area in New York with crowds of different
density and direction constraints in minutes. Resulting crowd motion can then be played endlessly always satisfying the user’s intent.

Abstract

Artists, animation and game designers are in demand for solutions
to easily populate large virtual environments with crowds that sat-
isfy desired visual features. This paper presents a method to in-
tuitively populate virtual environments by specifying two key fea-
tures: localized density, being the amount of agents per unit of sur-
face, and localized �ow, being the direction in which agents move
through a unit of surface. The technique we propose is also time-
independant, meaning that whatever the time in the animation, the
resulting crowd satis�es both features. To achieve this, our ap-
proach relies on the Crowd Patches model. After discretizing the
environment into regular patches and creating a graph that links
these patches, an iterative optimization process computes the local
changes to apply on each patch (increasing/reducing the number of
agents in each patch, updating the directions of agents in the patch)
in order to satisfy overall density and �ow constraints. A speci�c
stage is then introduced after each iteration to avoid the creation
of local loops by using a global path�nding process. As a result,
the method has the capacity of generating large realistic crowds in
minutes that endlessly satisfy both user speci�ed densities and �ow
directions, and is robust to contradictory inputs. At last, to ease the
design the method is implemented in an artist-driven tool through a
painting interface.

CR Categories: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism�Animation;

Keywords: crowd animation, crowd design, crowd patches

1 Introduction

Virtual crowds are important in a number of �elds, such as civil
engineering, architectural design, safety and entertainment. In the
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latter, virtual characters ef�ciently replace crowds of extras to pop-
ulate outdoor movie scenes or bring life to game scenes that now
reach the size of entire cities. In such cases, ideally, game and 3D
scene designers want crowd characters to follow sketches, guide-
lines or scenarios, that result into a virtual population visually
matching some expected features.

In related work, a number of crowd simulation techniques have
been proposed to automatically compute human-like and collision-
free animation trajectories. However, playing with the parameters
of such simulators does not provide a direct control over the visual
aspect of a crowd motion. Expertise and many trial-and-error itera-
tions are therefore required to match the desired results. More direct
control techniques have also been proposed through crowd manip-
ulation tools such as using velocity �elds, deforming trajectories,
imitating example motions or locally guiding agents. Nevertheless,
to our knowledge, no method empowers designers with the simul-
taneous control of two key visual features: local crowd density and
local �ow direction. Furthermore, while the instantaneous control
of density and �ow seems to remain a challenge, there is also an
interest in maintaining these visual features over time, i.e., animate
the crowd so that both density and �ow direction stay constant over
time in spite of the characters’ motion.

To address these challenges, we propose a novel optimization
process to compute crowd animation which takes as input user-
speci�ed levels of densities and �ow directions, and generates a
crowd animation that ful�lls the speci�cations independently of
time. Our representation relies on crowd patches [Yersin et al.
2009] which are pieces of repeated crowd animations that can be
assembled to form large crowd animations obeying boundary con-
straints.

Generating an assembly of patches in which patches locally match
a user-de�ned level of density and �ow direction while maintain-
ing boundary constraints is addressed by proposing an optimization
process that operates on the patch graph � a graph whose nodes are
patches and edges are faces that connect patches together. Opti-
mization is performed along patch parameters in the graph that are
(i) the number of way-points at the boundaries of patches to ac-
count for density, and (ii) the connections between possible entry
end exit way-points to account for �ow direction. The resulting an-
imation progressively converges to match the expected constraints,
by using the difference between the actual features and the expected
constraints as a cost function. Another computational stage is how-
ever necessary both to avoid unwanted behaviours such as charac-



ters walking in small loops, and to globally create �ows that satisfy
the user inputs. To this end, we �rst identify distant patches which
satisfy the less the user inputs. A path-planning process is then
proposed to compute paths in the patch graph linking such patches
together. Along these paths, entry and exit points are created to
construct a trajectory for characters.

Our contributions are the following:

� an optimization technique to compute crowd animations that
satisfy different sizes under localized density and directional
�ow constraints;

� a process to avoid local loops in characters’ trajectories by
computing paths linking unsatisfactory patches;

� an artist-driven tool for designing crowds. Designers can cre-
ate crowds very rapidly using an existing paint tool. User re-
quirements are speci�ed by combining image layers which
specify dynamic and static density, direction and obstacles.

Our paper is organized as follows. Section 2 overviews the avail-
able methods to simulate and control a crowd animation. Section 3
provides a global description of our solution and of its main compo-
nents. Our optimization technique to compute patches with desired
density and �ow direction is detailed in Section 4. Section 5 intro-
duces a simple interface for users to sketch those inputs. Finally,
results are discussed in Section 6 followed by limitations and con-
clusions (Sections 7 and 8).

2 Related Work

Crowd simulation is the process by which the motion of many char-
acters is computed in the purpose of, for example, populating and
animating virtual scenes. Broadly speaking, simulation methods
can be divided into macroscopic ones that consider the crowd as
an entity [Treuille et al. 2006; Narain et al. 2009] and microscopic
ones that handle individual characters to capture more heteroge-
neous behavior, as pioneered by Reynolds’ [1987]. Additionally,
crowd models can either be user de�ned or indirectly extracted from
data of reference crowds [Lerner et al. 2007; Ju et al. 2010; Char-
alambous and Chrysanthou 2014]. For animation purposes, one of
the most important challenges in any crowd simulation is to be able
to control the simulation outcome such as the resulting crowd den-
sity and �ow direction. Depending on the approach, this can be
achieved with varying degrees of success.

Macroscopic approaches tend to allow for easier control of �ow
direction; Chenney [2004] propose tiling �ow �elds to guide the
motion of crowds, Kapadia et al. [2011] annotate complex parts
of the environment, Patil et al. [2011] propose using artist de�ned
navigation �elds, whereas Courty and Corpetti [2007] propose a
data driven method to extract �ow �elds from videos. Treuille et
al. [2006] suggest calculating at simulation time dynamic potential
�elds whereas Narain et al. [2009] propose a hybrid approach to
model large and highly dense crowd movement based on density
constraints. More recently, Allain et al. [2014] proposed an op-
timization approach to deform simulation generated trajectories to
account for user de�ned constraints such as �ow. Stylianou et al.
[2004] proposed a stochastic approach for achieving density and
�ux constraints for street networks of cities. Although these meth-
ods help in achieving �ow constraints, it is dif�cult to achieve het-
erogeneous density constraints that are also maintained over time
as agents constantly move in the simulation.

Controlling density and �ow directions in microscopic approaches
[Reynolds 1987; Reynolds 1999] proves to be even more dif�cult
to achieve due to the emergent nature of these systems. Ulicny et al.

[2004] and Normoyle et al. [2014] for example proposed simple in-
terfaces to de�ne agents and their goals. Some of these approaches
use density values as input to the navigation algorithms; Best et al.
[2014] for example propose simulating character behavior based
on the relationship between density and speed. These methods can
achieve density control to a limited scale for a limited time.

Recently, methods to smoothly morph crowds between different
formations have been proposed [Takahashi et al. 2009; Xu et al.
2014; Gu and Deng 2011]. Ju et al. [2010] introduced an approach
by which different crowds can be blended together to create a new
simulation; using this approach it would be possible to have density
and direction control but simulations would be limited to the source
data and heterogeneous density would be dif�cult to achieve. Lai et
al. [2005] introduced a motion graph approach to simulating groups
of crowds using pre-existing data; this approach allows for direction
control of the entire group but has limitations due to constant group
size and limited variance in data.

Crowd motion post-processing methods have also been introduced
[Jordao et al. 2014; Kwon et al. 2008; Kim et al. 2014]. By us-
ing these techniques, density and �ow control of crowds can be
achieved at a limited scale. Jordao et al. [2014] for example trans-
form a scene composed of crowd patches [Yersin et al. 2009] to
match an environment; this allows for some direction control but
very limited density control. Additionally, these approaches are
user centric and are therefore time-consuming with limitations in
accuracy and are dependent on the quality of the source data.

In the context of all these previous crowd animation techniques,
our solution is the �rst system that enables locally controlling
both crowd density and motion �ows. In contrast with both post-
processing and simulation methods, we generate endless anima-
tions that constantly satisfy user density and �ow constraints. In
simulation-based approaches for example, we do not need to con-
stantly reconsider agent goals to maintain density levels over time.
Additionally, we propose a very intuitive way to control motion pa-
rameters without needing any expertise in crowd simulation sys-
tems to achieve crowd motion design. Actually, the framework
we propose aims in balancing the bene�ts of most of the above
approaches; it requires minimal user intervention, provides accu-
rate control of heterogeneous density and �ow direction, supports
crowds of vastly different sizes that can reach hundreds of thou-
sands of characters and has inexpensive run-time performance.

3 Overview

Our solution to controlling crowd density and direction �rst re-
quires (i) the provision of an interface to design the crowd require-
ments and (ii) an optimization process by which the crowd is gen-
erated (Figure 2). In the �rst step, users can use a painting interface
to draw areas of static and dynamic people as well as paint motion
directions through color gradients (Section 5). They can use and
combine as many layers of constraints as necessary; additionally
these maps can be overlayed on top of environment maps to match
obstacle free regions. Secondly, these maps are merged and dis-
cretized to generate a graph describing density and �ow direction
requirements for the environment. Each node of the graph corre-
sponds to a crowd patch [Yersin et al. 2009]. These patches are
then constructed and iteratively optimized to satisfy the user con-
straints (Section 4).

3.1 Crowd Patches

The proposed framework is built on top of the Crowd Patches plat-
form proposed by Yersin et al [Yersin et al. 2009]. A crowd patch
(Figure 3) is a pre-calculated periodic animation of a virtual crowd
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Figure 2: Overview of the Crowd Art platform.(1) Users de�ne a set of maps that annotate the environment with crowd information. (2)
These maps are merged to generate a set of crowd patches under density and direction constraints (color indicates direction). (3) Crowd
patch parameters are iteratively optimized to satisfy user requirements which are then used for (4) real-time animation of large crowds.

that when combined with other patches under boundary constraints
can be used to populate a large environment with minimal run-
time cost. More formally, a crowd patch is a tuple f A ; �; D ; Sg
where A � R2 is the convex 2D geometrical area where the an-
imation takes place, � is the period of the animation and D and
S are the sets of dynamic and static objects, respectively. Static
objects are simple obstacles whose geometry is fully contained in-
side the patch, whereas dynamic objects are animated ones; i.e.,
they are moving in time according to a set of constrained spatio-
temporal trajectories. There are two categories of dynamic objects:
endogenous and exogenous characters (D en and D ex respectively).
Endogenous characters remain inside A for the entire duration � of
the patch whereas exogenous leave A and enter other patches.
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Figure 3: Patches and PatternsAdjacent patches can be connected
if they have matching mirror patterns. Shading on the base of the
patch indicates density and arrows represent �ow direction.

3.2 Synthesizing Crowds using Crowd Patches

A patch can be considered as a spatio-temporal right prism with
base area A and height � . By de�ning spatio-temporal control
points on each of the lateral faces of the prism (called patterns),
input and output points (I/O points) can be de�ned. These points
act as portals between patches where characters can respectively
enter or leave the patch (Figure 3). Two patches can be connected
if they have matching patterns but with points of opposite purpose;
i.e., input and output points switch roles. Therefore large � -periodic
crowd animations can be created by assembling patches. Here there
is one important constraint; the total number of input and output
points of a patch must be equal; i.e., exogenous characters entering
a patch must leave it at some time.

Crowd Patches Pipeline Crowd animation systems that use
crowd patches as building blocks for crowds are typically decom-

posed into 4 stages (Figure 2):

1. Patch decomposition. The scene to be populated is divided
into smaller convex areas where periodic crowd animations
will be computed.

2. Patches de�nition. Patches parameters are then com-
puted/de�ned so that boundary constraints are not violated.

3. In-Patch trajectories generation. Boundary points in single
patches are connected and internal collision free trajectories
are generated.

4. Animation. Finally, characters are placed on the trajectories
like trains on rails and the animation can be played.

Typically, stages 1 and 2 are either manually set or automatically
generated for very simple scenes with simple constraints (such as
uniform density). For more dif�cult scenarios, such as big envi-
ronments with varying density and �ow, the computation of pa-
rameters for each patch is a complex and constrained endeavor.
We propose here an optimization-based approach to automatically
compute such parameters (Section 4). To handle internal trajecto-
ries (Step 3), we extend the stable matching algorithm proposed by
Ramirez et al. [2014]) and deal with collision avoidance using a ve-
locity based approach based on RVO (while [Ramirez et al. 2014]
use a force based approach).

3.3 Density and Direction Control in Patches

We aim in computing parameters of our crowd patches from user-
de�ned density and �ow directions over period � . Density in a
patch can be de�ned as:

� =
1
�

Z �

0
� (t )dt =

1
A�

Z �

0
jD (t)jdt: (1)

Assuming patches of constant size A and period � , density can be
changed only by the number of characters jD (t)j that are present in
the patch at any given time. Recall that we have two kinds of char-
acters; endogenous D en and exogenous D ex . Endogenous affect
density during the entire period of the patch, whereas exogenous af-
fect density dynamically and are dependant of the number of input
and output points and inter-connections between them (Figure 3).
Equation 1 therefore can be written as:

� =
jD en j

A
+

1
A�

Z �

0
jD ex (t)jdt: (2)
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Figure 4: Density and I/O pointsExperimental data demonstrating
the correlation between density and the number of I/O points for
patches of different size and same period (� = 30 secs). Shaded
regions represent the variance in density.

Therefore density can be controlled in two ways: (a) by modifying
endogenous characters D en and (b) by modifying input and out-
put points on the sides of the patch (this changes D ex (t)). Density
depends on the exact spatio-temporal con�guration of input/output
points; by approximation we can actually correlate density only to
the number of these points. This is justi�ed by the experimental
measurements shown in Figure 4 that demonstrate a direct correla-
tion between the two with small variance (due to temporal place-
ment and optimal connections between points). To compute these
data, we generated multitudes of patches of different parameters
(area A , period � ), and different numbers and placement of IO
points; static characters were not considered. For each of these
patches, we found optimal connections 1 between points and then
measured the resulting density (Equation 2).

Flow direction in patches can be de�ned by the way input/output
points are placed and how they are interconnected. A connection
between an input and output point de�nes a single direction d i that
lasts t i seconds. By knowing all connections D = f d i : i 2 [1; n]g
in a patch, we de�ne the main �ow direction of a patch as:

d =
nX

i =1

t i d i : (3)

One can observe the difference of density and �ow direction be-
tween two neighboring patches in the simple example displayed in
Figure 3.

4 Optimizing Crowd Requirements

In this section we explain how to construct an assembly of crowd
patches with locally controlled density and �ow direction. An
optimization-based strategy is employed to �nd the optimal crowd
patches parameters without violating boundary conditions between
neighboring patches (see Figure 3).

Optimization Strategy The main principle behind our optimiza-
tion strategy is to add or remove sets of input and output points at
boundaries of patches at each step of the optimization loop aiming

1Optimal connections were retrieved using the approach of Ramirez et
al. [2014].

to get as close as possible to the user inputs. We measure a signed
error for each patch. The error is computed as a combination of (i)
a density error measuring the difference in terms of number of char-
acters between existing and expect values in a patch and (ii) a direc-
tion error measuring the difference between the expected direction
and the weighted sum of actual characters’ directions (Equation 3).
Given that every change on a patch impacts its neighboring patches
� therefore changing neighboring densities and �ows, the steps are
repeated until convergence. Convergence is met when error change
is negligible.

Constraints During optimization, two types of constraints need to
be satis�ed: user and patch constraints. User constraints de�ne de-
sired density and direction where needed; every patch has a density
constraint whereas direction is optional and can be de�ned in parts
of the environment. Patch constraints on the other hand concern
cardinality of input and output points as well as compatibility be-
tween patterns of neighboring patches (Section 3.1); i.e., patches
must be connectable and periodic. Additionally, there is a maxi-
mum allowed density value � max for all patches.

Representation Our problem is modelled as a graph G = ( V; E);
nodes V and edges E indicate patches and connections between
patches respectively. Each node u 2 V stores the measured density
� u;c in the patch, the required density � u;r , the measured direction
du;c (if needed) and the required direction du;r . Directions are unit
length 2D vectors.

4.1 Algorithm

For all the remaining, please consult Algorithm 1; numbers near the
paragraph titles indicate lines in the algorithm.

Initialization (Alg. 1, lines 1, 2) The graph is initialized by setting
all patches to have the same density value so that each one of them
has the exact same number of input/output points and can be easily
connected without violating patch constraints (setting all patches to
a zero density value is a possible initialization). The initial values
for density affect the speed of convergence which is also depen-
dant on the complexity of the density and direction requirements
(Section 6). Given the initial density value, we use a regression on
experimental data in order to compute the initial number of input
and output points in patch. Figure 4 displays the relation between
density (vertically) and number of input/output points for different
patch sizes. Additionally patch size A and period � are uniformly
set by the user depending on accuracy requirements; smaller patch
sizes lead to better approximation of density.

Finally, during initialization the graph is split into strongly con-
nected components using Tarjan’s algorithm [Tarjan 1972]; op-
timizations are then performed independently on each connected
component (Section 4.2). Splitting the graph �rst reduces the over-
all complexity of the process and then allows to concentrate the
modi�cations in strongly connected areas (i.e. where there are more
possibilities of connections between components).

Measuring Convergence (Alg. 1, lines 3, 22) To measure the error
to the desired solution, we de�ne a function E (G) that composes
density and direction errors of the entire scene at each iteration step
(E � (G) and Ed (G) respectively):

E (G) = E � (G) + Ed (G) (4)

We de�ne E � (G) to be the Root Mean Square Error (RMSE) of



density scaled to the maximum allowed density � max
2:

E � (G) =
1

� max

s
1

jV j

X

u2V

(� u;r � � u;c )2 (5)

We then de�ne Ed (G) based on the angle between du;c and du;r :

Ed (G) =
1

jVd j

X

u2Vd

(1 � du;r :du;c ) (6)

where Vd � V represents the subset of patches that have direction
requirements. Now the interesting aspect here is that rather than
computing the current direction du;r from existing trajectories, we
actually optimize the assignments between inputs and output points
and then measure the direction. The assignments are based on opti-
mal matching by extending the work of [Ramirez et al. 2014]. The
direction is measured using the weighted average direction of con-
nections (a connection being a straight line between I/O points).
Weights are simply de�ned as the duration between the input/ouput
points of a connection. Ramirez et al. [2014] optimize the con-
nections between pairs of input/output points in a patch by using
a score function that gives more imortance to points on opposing
patterns based on the preferred speed of each agent. We extend
this in two ways; by de�ning a new matching function that addi-
tionally takes into account the direction contraints and by setting
the preferred speed of agents in any given patch based on the den-
sity requirements. We base the latter on the fact that people tend to
move slower in dense rather than sparse situations [Seyfried et al.
2005].

4.2 Optimization steps

During each step of Algorithm 1, three basic operations are per-
formed to minimize Equation 4: (i) �nding areas with large errors,
(ii) selecting subsets of them and (iii) removing/adding points in
patches that lie on these paths of minimal cost between them.

Error and Local Optima (Alg. 1, lines 4-8) At every optimization
step, we set an error value on each node u 2 V of the graph:

e(u) = e� (u) + sgn( e� (u))ed (u) (7)

e� (u) = � u;c � � u;r is the signed error in density, ed (u) = j1 �
du;r :du;c j=2 is the error in direction and sgn(:) is the sign function.
Positive values of e� (u) indicate that the node has more density
than requested whereas negative indicate that the node is lacking
density. Values of ed (u) near 0 indicate good direction whereas
values near 1 indicate opposite direction. Local positive maxima
of e(u) in G indicate neighborhoods of patches that either have
an abundance of density or direction is not correct, whereas local
negative minima indicate areas that need characters and have bad
direction (Figure 5).

Fixing errors (Alg. 1, lines 7, 8, 9, 16) We use these positive max-
ima and negative minima patches as starting points to �x problems
in the patches. First, all of them are found and grouped together
based on distance, type (maxima with maxima and minima with
minima) and if they belong in the same connected component; these
groups typically consist of 2�5 optima. Then, circular paths that
aim in minimizing error between the patches of a single group are
found. We emphasize that these paths are not actual paths; rather
they act as on/off switches between patches that open doors so that

2This is currently user de�ned and set to 0.35 characters:m �2 .

Algorithm 1: Optimizing density and main direction constraints.
Each mutation manipulates I/O points and affects a set of patches.
input : Graph G = ( V; E) of density and main direction user

constraints.
output: Graph G = ( V; E) modi�ed to satisfy all user and patch

constraints.
1InitRandomSolution (G);
2SC  StronglyConnectedComponents (G);
3while not converged do

/ * Mutate Graph G * /
4for each component Gi = ( Vi ; E i ) 2 SC do

/ * Update error values on nodes and
edges * /

5UpdateSignedError (Gi ; Vi );
6UpdateEdgeW eights(Gi ; E i );

/ * Find error optima and fix them in
groups * /

7max  ErrorMaxima (Vi ) > 0;
8min  ErrorMinima (Vi ) < 0;
9MG  CreateGroups (max );

10for each group of maxima m 2 MG do
11path  MinimumCostP ath (Gi ; m);

/ * Check if points can be deleted
* /

12if CanRemove(path) then
13RemoveP oints(path);
14end
15end
16MG  CreateGroups (min );
17for each group of minima m 2 MG do
18path  MinimumCostP ath (Gi ; m);
19AddP oints (path);
20end
21end
22globalError  measureGlobalError (G)
23end
24return G;

when the time comes, connections can be made that satisfy user
constraints. Also, by forcing circular paths we ensure that pairs of
input and output points are added together so that boundary con-
straints are not violated. Additionally, we limit the matching of op-
tima based on distance so that it is easier to �nd paths and minimize
error instead of actually increasing it.

Path �nding between optima (Alg. 1, lines 10-15, 17-20) Having
a set O = f Oi : 1 � i � kg of k optima, a path between each
pair f Oi ; O( i +1)% k g; 8i 2 [1; k] of optima is found. In the case
where these optima are positive maxima, points must be deleted
(Figure 5 right). To do so, a path between two maxima is found that
minimizes the derivative e0(u) between any two patches in the path
(i.e., the direction of slower descent). More importantly, each pat-
tern that connects two patches in the entire path must have enough
I/O points to allow for deletion. After the entire path between all
maxima is found, pairs of input and output points that connect con-
secutive patches are deleted. In the case where the optima are neg-
ative minima, the operation is slightly easier since we do not need
to make sure that points exist or not on each pattern touched by the
path (Figure 5). Here, we again aim in minimizing e0(u) and when
the entire path is found, points are added instead of deleted.

We note that in both cases, it is possible to have patches in the
path where error increases; this effect is minimized by following
patches with �high� same sign errors and by adding a penalty if we



Figure 6: Convergence Algorithm 1 convergence for some of the
experiments presented in Section 6.

cross the boundary where we have e(u) = 0 . Even though some
patches can have an increase in error, these are typically �xed on
a following update step. Finally, instead of modifying all groups
of maxima and minima found at each step, we select a few; this
selection is simply a linear function of the number of patches in a
given connected component 3 .

Internal Trajectories (Alg. 1, line 22) At the end of each opti-
mization step, current density and direction values (� u;c and du;c

respectively), must be computed for each patch. To speed up cal-
culations, simpli�ed trajectories are found that do not take into ac-
count collision avoidance; this simpli�cation does not affect accu-
racy (Section 4.1). Accurate trajectories are calculated at the end of
optimization using the approach described in Section 3.2.

Algorithm Convergence (Alg. 1, line 3) The proposed approach
converges to a globally good solution (Equation 4) after a few min-
utes (Figure 6). Convergence depends on the initial con�guration
of each patch, the complexity of the user constraints, the number of
paths updated at each step and and the number of requested char-
acters. See Table 1 for the convergence time of the experiments
discussed in Section 6.

5 User Interface

This section describes the user interface for specifying crowd den-
sity and direction requirements. The proposed approach is paint-
driven and exploits tools familiar to artists such as brushes, selec-
tions, movement, gradients, strokes, etc. The system was integrated
in an open source image processing tool [GIMP Team 2001�2015]
as a set of plugins. An artist can de�ne a crowd by painting a set
of grayscale layers on top of the environment map; these layers are
essentially metadata having all the information needed to generate
a crowd with density and direction controls. We de�ne four basic
types of layers (Figure 7): dynamic and static density, direction and
obstacles; a user can create as many layers of a speci�c type as she
pleases. Additionally, layer and pixel opacity are used to assign
weights to layers and pixels respectively.

Crowd Maps Dynamic and static density layers are used to de�ne
the density of exogenous and endogenous characters respectively.
Density is de�ned through the intensity of pixels; the brighter the
values the higher the density. Direction is de�ned by drawing dark

3If G i = ( Vi ; E i ) � G = ( V; E ) is a connected component, we
update at each step bVi =400c + 1 paths.
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Figure 7: De�ning Constraints Users can annotate an environ-
ment with various information using image layers; these include
obstacles, dynamic and static density and directions. Layers are
separately accumulated to generate �nal constraints. (bottom) Fi-
nally, a graph of density and direction contraints is generated.

to bright gradients and �nding the layer’s 2D gradient. Finally,
obstacle layers are used to easily mask out areas where density must
be zero; this can also be achieved by careful painting of density. We
found that this approach eases the process for various kinds of pre-
existing environment maps where obstacles can be selected based
on color.

Layer Merging Layers are then separately merged together to gen-
erate three grayscale layers describing the �nal requirements for
overall (a) dynamic density, (b) static density and (c) direction. All
direction and density layers are accumulated together using weights
based on pixel and layer opacity. Additionally areas where obsta-
cles are present are removed.

From maps to crowd patches Having global merged layers, three
additional parameters are de�ned: the desired number of charac-
ters, the crowd patches size and global period � ; these parameters
affect the quality and accuracy of the generated crowd. Each crowd
patch is de�ned by a square set of pixels depending on maps reso-
lution and patch size; desired density and direction for a patch are
computed by the average of the pixel values. Empty patches are re-
moved and a graph of interconnected patches is generated based on
neighborhood information (Figure 7 bottom); this graph is given as
input to the optimization approach described in Section 4 to gener-
ate the desired crowd. We found that users need only a few minutes
to populate scenes such as the ones shown in Section 6.

6 Results

We evaluate our method according to different types of scenarios.
First, simple scenarios explore how accurately our method actu-
ally match users’ inputs; both for density and �ow requirements.
Secondly, we demonstrate our approach in typical use cases that
include populating city like environments. Finally, we analyze the
performance of our approach.

Please refer to the accompanying video4 for animated versions of

4Online version: https://youtu.be/TUCr7zBRxOM

https://youtu.be/TUCr7zBRxOM
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Figure 5: Fixing errors. (left) The leftmost image shows the signed error map at one step of the optimization. Green values indicate 0,
cold and hot colors indicate negative and positive values respectively. The darkest blue indicate negative minima and red positive maxima.
(middle) Two minima A and B have been selected based on distance and a path of minimal cost is found between A and B and back; pairs of
output/input points are added on the sides that connect two patches of the path increasing density. (right) Three maxima have been selected
and paths from A to B, B to C and C to A are found; pairs of input/output points are removed on the path only if points can be removed from
all patches on the path. Observe that in this case, patches that were ok (green) were modi�ed to �x erroneous ones.

the paper results; this is especially useful for the �ow experiments.
We emphasize here that all resulting animations can be ef�ciently
and endlessly played with user requirements being constantly satis-
�ed; i.e., direction and �ow direction remain constant over time and
the optimized result is never violated. In comparison with previous
approaches, only our method provides such a feature. For all pre-
sented examples, patches were de�ned so that A ranged between
16 and 100m2 .

6.1 Density Control

Our system is capable of generating crowds of different density re-
quirements (Figure 8); to simulate different density patterns, users
provide grayscale density maps, the required number of characters
and the size of the area and patches. We remind the reader that users
can provide two kinds of density maps; dynamic and static. Here
we demonstrate dynamically moving crowds and not static which
are trivial to handle.

The proposed system is capable of handling very diverse inputs
such as simple uniform density (not shown), lanes of discrete den-
sity, smooth gradients and even complex ones such as paintings
with minimal errors (Figure 8). The demonstrated examples con-
sist of crowds of different sizes, ranging from the relatively small
of 1000 characters up to very large ones of 100000 characters. We
note that characters move around the environment between areas of
high and low density and are not localized.

6.2 Flow Direction Control

Flow direction can easily be controlled with our approach; we pro-
vide here the description of the experiments and the results. We
set up three simple scenarios; a uniform density crowd with a �ow
constraint in a part of the crowd (Center Flow), a circular mov-
ing crowd (1-Circular Flow) and �nally three circular motions (3-
Circular Flows); in both of the circular motions there is a small
number of characters moving in the remainder of the region with-
out any direction constraint (Figure 9).

In Center Flow, uniform density is achieved and the characters in
the middle follow the requested direction. Importantly, in this sce-
nario, �ows emerge in other parts of the environment that guide the
characters from the end of the �ow, around the �ow and back at the
beginning. In both 1-Circular Flow and 3-Circular Flow, circular
lanes of characters are satis�ed; characters in the areas without any
�ow constraints enter the lanes, follow them and either leave them

to satisfy density constraints around the lanes or just follow the mo-
tions. These kind of control can be used to generate scenes such as
strikes or people entering/leaving a train station.

6.3 Use Cases

Having demonstrated our system in typical scenarios, we can pop-
ulate virtual environments with combinations of constraints. We
demonstrate these results in two example scenarios; a single street
around a park under different constraints (Figure 10) and a simula-
tion of the Wall Street area in New York city (Figures 1 and 11).

Changing User Requirements A user can change the requirements
for the same environment quite easily as demonstrated in Figure 10;
here the scene is populated with a set of immobile characters (static
density) that are lying on the lown and a set of moving characters
with different �ows around them. Moving characters avoid both
dynamic and static ones.

Wall Street It is also easy and intuitive to populate large city-like
environments such as the one shown in Figures 1 and 11. We popu-
late this environment with a non uniform crowd of 5000 characters
and additionally add direction constraints in some areas (Figure 11).
Obstacles such as buildings are additionally marked through the
user interface. Our system converges to a good solution satisfying
density and �ow constraints with minimal error in just a few steps.

Massive Crowds Finally, we demonstrate that our system can scale
to very large crowds of hundreds of thousands of characters under
complex constraints such as the one in Figure 12. This scene con-
sists of ~100000 moving characters in an area of 0:8km2 (~13000
patches) satisfying an image based density pattern. The system con-
verges to density patterns that are close to the requested even though
characters move in areas where the requested density was very low;
this happens because of the high contrast between high and low
density areas. The resulting animation is endless and collision free.

6.4 Performance

The proposed framework can take up to a few minutes to �nd crowd
patches con�gurations under user constraints (Table 1); these re-
sults do not include the time to resolve internal collisions for the
patches which is out of the scope of this work. We provide time
for both optimization and resolving collisions using our velocity
based implementation for completeness; notice that this time is sig-
ni�cantly larger than the time to optimize patch parameters. Op-
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Figure 8: Density ControlOur system can simulate crowds of different density patterns ranging from the very simple discrete density cases
of a few thousand characters to the very complex ones (e.g., paintings) of hundreds of thousands. We note that characters move continuously
between densities without violating the overall density requirements.
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Figure 9: Flow Direction Control Our system allows for easy control of �ow direction.

timization time is affected by the number of patches, number of
characters and the complexity of user constraints; it typically takes
minutes. All of the performance measurements were collected on
a 64-bit Linux based system having an 8 core IntelfiXeon(R) CPU
E5-1620 clocked at 3.60GHz, with 16GB of RAM and a GeForce
GTX 680/PCIe/SSE2 GPU card.

7 Limitations

The current framework allows for density and direction patterns that
are constant over time. This limits simulating day and night cycles
for example. Based on crowd patches, this makes such functionality
dif�cult to achieve: a dynamic patches update system needs to be
developed.

Patches are initially organized using a regular grid, making it dif-
�cult to �t in a given complex environment and detailed user con-
straints. In addition, only a single direction constraint can be set;
this limits the potential animations that can be produced, such as
bidirectional �ows inside patches. Our algorithm though is not
dependant on a grid implementation; it considers graphs of crowd
patches of any shape. Finally, implicit �ow direction derived from
density gradients is not taken into account.

We do not �nd and reuse identical patches at various locations
therefore the crowd patches technique is not optimally used. Us-
ing a �nite set of precomputed patches would certainly and drasti-
cally increase performance; this could allow for interactivity, and to
design the crowd motion at the same time it is being visualized.

There are cases that the algorithm will fail to get a very accurate so-
lution due to bad and/or highly contradicting user constraints. An-
other example of that is de�ning directions of motion that go from
very high density areas to very low density ones; this results in low
density constraints being violated.

Finally, to calculate �nal collision free patch trajectories we are us-
ing an extension of of the stable matching approach proposed by
Ramirez et al. [2014]. This technique fails in generating high qual-
ity trajectories for very high density patches therefore we are con-
sidering alternative approaches.

8 Conclusion

A method to intuitively design crowd motion with simultaneous
control of density and direction has been presented. These two
quantities are essential to de�ne the visual aspect of crowd motion,
but no previous methods allow users to easily control them over
large-scale crowd motion: many of our demonstrations required
minimal time to de�ne. Our framework is robust to various kind
of inputs such as simple user strokes, city maps or digital images
and is particularly ef�cient to populate environments with ambi-
ent crowds of certain patterns such as cities and expressive artistic
crowds. Users can create crowds using our prototype system in
minutes, with no speci�c knowledge, no need to annotate environ-
ments and no need to tune complex sets of parameters. Addition-
ally, generated crowds satisfy user constraints endlessly and not just
for a short period of time.

We are currently considering ways to enhance crowd control, such
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Figure 10: Same environment, different constraints.With the proposed system it is easy to change constraints in an area.
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Figure 12: Massive CrowdsOur system can handle complex density patterns based on images or photographs such as this one based on a
painting. We demonstrate here the generated patches’ density and direction results for a massive crowd of 100000 characters in a 0:8km2

area. Notice that there is some error in the resulting density due to the complexity of the pattern. We note that the resulting animation is
collision free and can be played real time (no rendering).

as more diverse �ow directions inside patches (e.g., bi-directional
or cross sections); this can be achieved for example by having mul-
tiple directions in each patch. Another possible improvement is
adding sources and sinks (buildings, subway stations, etc.); this
will remove circular paths and improve convergence. Importantly,
we are considering conducting user studies to asses the quality or
results and the user experience of our approach both by naive and
expert users.

Another future work direction is to consider an approach to �nd
an optimal set of convex crowd patches that �t precisely obstacles
and user requirements. Finally, we would like to be able to transi-
tion between different constraints to model situations like different
hours of the day for the same places; e.g., parks, business areas,
etc. These transitions should look natural and be continuous, so a
careful method of morphing between patches should be considered.
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