
HAL Id: hal-01214259
https://inria.hal.science/hal-01214259v2

Preprint submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Fast, uniform, and compact scalar multiplication for
elliptic curves and genus 2 Jacobians with applications

to signature schemes
Ping Ngai Chung, Craig Costello, Benjamin Smith

To cite this version:
Ping Ngai Chung, Craig Costello, Benjamin Smith. Fast, uniform, and compact scalar multiplica-
tion for elliptic curves and genus 2 Jacobians with applications to signature schemes. 2015. �hal-
01214259v2�

https://inria.hal.science/hal-01214259v2
https://hal.archives-ouvertes.fr

Fast, uniform, and compact scalar multiplication

for elliptic curves and genus 2 Jacobians

with applications to signature schemes

Ping Ngai Chung1, Craig Costello2, and Benjamin Smith3

1 University of Chicago, USA
briancpn@math.uchicago.edu

2 Microsoft Research, USA
craigco@microsoft.com

3 INRIA and Laboratoire d’Informatique de l’École polytechnique (LIX), France
smith@lix.polytechnique.fr

Abstract. We give a general framework for uniform, constant-time one-
and two-dimensional scalar multiplication algorithms for elliptic curves
and Jacobians of genus 2 curves that operate by projecting to the x-
line or Kummer surface, where we can exploit faster and more uniform
pseudomultiplication, before recovering the proper “signed” output back
on the curve or Jacobian. This extends the work of López and Dahab,
Okeya and Sakurai, and Brier and Joye to genus 2, and also to two-
dimensional scalar multiplication. Our results show that many existing
fast pseudomultiplication implementations (hitherto limited to applica-
tions in Diffie–Hellman key exchange) can be wrapped with simple and
efficient pre- and post-computations to yield competitive full scalar mul-
tiplication algorithms, ready for use in more general discrete logarithm-
based cryptosystems, including signature schemes. This is especially in-
teresting for genus 2, where Kummer surfaces can outperform compara-
ble elliptic curve systems. As an example, we construct an instance of
the Schnorr signature scheme driven by Kummer surface arithmetic.

1 Introduction

In terms of per-bit security, elliptic curves and Jacobians of genus 2 curves
appear to be roughly equivalent. However, when it comes to efficient and side-
channel-aware implementations, we see a curious divergence. Full genus 2 Ja-
cobian arithmetic is relatively slow compared with elliptic curves, and hard to
implement in a uniform and constant-time fashion. On the other hand, we have
an extremely fast and uniform scalar pseudomultiplication for genus 2 Kummer
surfaces, which often outperforms its elliptic equivalent; but this comes at the
cost of identifying elements with their inverses, so Kummer surfaces are widely
believed to be suitable only for Diffie–Hellman protocols, where no individual
full group operations are required.

Thus, genus 2 beats elliptic curve performance for Diffie–Hellman (where we
can use Kummer surfaces), but is beaten in almost every other implementation

scenario (where we are confined to Jacobians). In this article we show how to
exploit Kummer surface arithmetic to carry out full Jacobian scalar multiplica-
tions, bringing the speed and side-channel security of Kummers to implemen-
tations of other discrete-log-based cryptographic protocols. In particular, our
results show that many existing competitive Diffie–Hellman implementations
based on pseudomultiplication can be wrapped with simple and efficient pre-
and post-computations to yield competitive full scalar multiplication algorithms,
ready for use in more general cryptosystems, including signature schemes.

Scalar multiplication. To make things precise, let G be a subgroup of an elliptic
curve or a genus 2 Jacobian (with ⊕ denoting the group law, and ⊖ its inverse).
We are interested in computing one-dimensional scalar multiplications

(m,P) 7−→ [m]P := P ⊕ · · · ⊕ P
︸ ︷︷ ︸

m times

for m ∈ Z≥0, P ∈ G ,

which is the operation at the heart of all discrete logarithm and Diffie–Hellman
problem-based cryptosystems. We are also interested in two-dimensional multi-
scalar multiplications

((m,n), (P,Q)) 7−→ [m]P ⊕ [n]Q for m,n ∈ Z≥0, P,Q ∈ G ;

these appear explicitly in many cryptographic protocols, including signature
verification, but they are also a key ingredient in endomorphism-accelerated
one-dimensional scalar multiplication techniques such as GLV [18] and its de-
scendants.

If the scalar m is secret, then [m]P must be computed in a uniform and
constant-time way to protect against even the most elementary side-channel at-
tacks. This means that the execution path of the algorithm must be independent
of the scalar m (we may assume that the bitlength of m is fixed).

Uniform, constant-time algorithms for elliptic curve scalar multiplication are
well-known (and even widely-used). In contrast, if G is a subgroup of a genus 2
Jacobian, then this requirement has represented an insurmountable obstacle until
now: the usual Cantor arithmetic [10] and its derivatives [23] have so many
incompatible special cases that it has appeared impossible to implement it in a
uniform way without abandoning all hope of competitive efficiency (see §6).

Kummer surfaces and x-lines. The situation changes dramatically when we pass
to the quotient G/ 〈±1〉, identifying elements with their inverses. Let

x : G −→ G/ 〈±1〉

be the quotient map, so x(P) = x(⊖P) for all P in G. In the elliptic case,
x is projection onto the x-coordinate (whence our notation); in genus 2, x is
the map from the Jacobian to its Kummer surface. We emphasize that G/ 〈±1〉
is not a group, and at first glance this prevents us instantiating group-based

protocols in G/ 〈±1〉. Nevertheless, scalar multiplication in G induces a well-
defined pseudomultiplication

(m,x(P)) 7−→ x([m]P)

in G/ 〈±1〉, because [m](±P) = ±([m]P). This suffices for implementing proto-
cols like Diffie–Hellman key exchange which only involve scalar multiplication,
and not individual group operations (which we lose in passing from G to G/ 〈±1〉).

Pseudomultiplication algorithms are typically faster and simpler than full
scalar multiplication algorithms—the x-only Montgomery ladder being a case in
point for elliptic curves—and these algorithms have therefore become the basis
of the fastest and safest Diffie–Hellman implementations (such as Bernstein’s
Curve25519 software [1] and its heirs). We also see excellent Diffie–Hellman
implementations based on Kummer surfaces [4].

But it is widely believed that pseudomultiplication cannot be used for general
cryptosystems, because G/ 〈±1〉 is not a group: since the “sign” of the output of
a pseudomultiplication is ambiguous, it cannot be used as the input to individual
group operations. This belief has so far disqualified Kummers as candidates for
implementing most common signature schemes, as well as encryption schemes
such as ElGamal [17]. As a result, we tend not to see highly competitive genus 2
implementations of signatures and public-key encryption schemes, because we
are hamstrung by relatively slow and non-uniform Jacobian arithmetic.

Recovering group elements after pseudomultiplication. The folklore that Kum-
mer surfaces cannot be used in true group-based cryptosystems may appear
mathematically true—but it is algorithmically false.

Indeed, it has long been known that x-only arithmetic on elliptic curves
can be used for full scalar multiplication: López and Dahab [27] (followed by
Okeya and Sakurai [31] and Brier and Joye [8]) showed that the auxiliary values
computed by the x-only Montgomery ladder can be used to recover the missing
y-coordinate, and hence to compute full scalar multiplications on elliptic curves.

In this work we extend this technique from elliptic curves to genus 2, and from
one- to two-dimensional scalar multiplication. In the abstract, our algorithms
follow the same common pattern:

1. First, Project the inputs (and possibly some auxiliary elements) from G to
G/ 〈±1〉 using the x map;

2. then pseudomultiply in G/ 〈±1〉 (that is, compute x([m]P) or x([m]P⊕ [n]Q)
using a differential addition chain);

3. finally, efficiently Recover the correct preimage [m]P (or [m]P ⊕ [n]Q) in G
from the outputs of the pseudomultiplication.

The one-dimensional version of this pattern in §3 uses the well-known Mont-
gomery ladder [29] for its pseudomultiplication; the two-dimensional version in §4
is based on Bernstein’s binary differential addition chain [2].

In §5 we apply our algorithms to various models of elliptic curves. We recover
Okeya–Sakurai and Brier–Joye multiplication, along with new uniform, compact
two-dimensional scalar multiplication algorithms.

Moving to genus 2, the Jacobian point recovery method we present in §6
solves the problem of uniform genus 2 arithmetic (at least for scalar multipli-
cation): rather than wrestling with the special cases of Cantor’s algorithm, we
can descend to the faster, more uniform Kummer surface, pseudomultiply there,
and then recover the right Jacobian point afterwards. Our methods work on the
most general form of the Kummer, and are easy to adapt to more specialized
models.

In §7 we specialize to the Gaudry model for Kummer surfaces, which have
the fastest known arithmetic. The result is exceptionally fast one- and two-
dimensional scalar multiplication algorithms for the genus 2 Jacobians that ad-
mit these Kummer surfaces. Finally, in §8 we give a concrete example of how our
algorithms can be applied to create fast instances of Schnorr signature schemes.

Remark 1. Damien Robert has pointed out to us that his recent preprint with
David Lubicz [28] uses similar techniques to improve the efficiency of their ex-
plicit arithmetic of general abelian varieties in arbitrarily high dimension based
on theta functions. See Remark 6 below for further details.

Notation and conventions Throughout, Fq denotes a finite field of charac-
teristic > 3. As usual, we use M, S, I and a to respectively denote the costs of
one field multiplication, squaring, inversion, and addition in Fq. We also use mc

to denote the cost of a field multiplication by a fixed constant c, which is often
significantly different to M, i.e., when c is a small curve constant.

In our algorithms, we use the notation (x1, . . . , xn)← (y1, . . . , yn) to denote
parallel assignment. In sequential terms, (x, y) ← (z, w) is equivalent to x ←
z; y ← w (and to y ← w;x ← z), while (x, y)← (y, x), which swaps x and y, is
equivalent to t← x;x← y; y ← t, where t is a temporary variable.

2 Key subroutines

In this paper we work with various models of elliptic curves, Jacobians, and
Kummer surfaces, but viewed from a high level the algorithms are essentially
the same; we can therefore make some substantial simplifications by presenting
them as template algorithms acting on an abstract abelian group G, and its
quotient G/±1, by black-box subroutines (whose implementation details we will
provide later). We therefore assume the existence of six algorithms acting on
elements of G and G/ 〈±1〉:

1. Project : G → G/ 〈±1〉 implements the mapping x : G → G/ 〈±1〉; that is,

Project(P) = x(P) for all P ∈ G .

This is trivial in the elliptic context, where it amounts to dropping one of
the coordinates, and only slightly less straightforward in genus 2.

2. xDBL : G/ 〈±1〉 → G/ 〈±1〉 implements pseudo-doubling in G/ 〈±1〉: that is,

xDBL(x(P)) = x([2]P) for all P ∈ G .

Efficient formulæ for xDBL are known in each of our contexts.
3. xADD : (G/ 〈±1〉)3 → G/ 〈±1〉 implements the standard differential addition:

xADD(x(P), x(Q), x(P ⊖Q)) = x(P ⊕Q) for all P 6= Q ∈ G .

As with xDBL, efficient formulæ for xADD are known in each of our contexts.
4. xDBLADD : (G/ 〈±1〉)3 → (G/ 〈±1〉)2 implements a simultaneous doubling and

differential addition:

xDBLADD(x(P), x(Q), x(Q⊖P)) = (x([2]P), x(P ⊕Q)) for all P 6= Q ∈ G .

While xDBLADD may be näıvely defined by computing an xDBL and an xADD

separately—that is, as

xDBLADD(x(P), x(Q), x(Q⊖P)) = (xDBL(x(P)), xADD(x(P), x(Q), x(Q⊖P)))

—sometimes in practice it can be implemented more efficiently by exploiting
shared intermediate operands, so we treat it as a distinct operation.

5. ADD : G × G → G computes the group law in G:

ADD(P,Q) = P ⊕Q for all P,Q ∈ G .

ADD is only used once in the two-dimensional algorithm; it is not used at all
in the one-dimensional algorithm. Minimizing ADDs is a deliberate strategy:
in practice, it is often a relatively costly and potentially non-constant-time
operation compared with xADD (especially in genus 2).

6. Recover : G × (G/ 〈±1〉)2 → G/ 〈±1〉 computes preimages under x:

Recover(P, x(Q), x(Q ⊕ P)) = Q for all P,Q ∈ G \ G[2] .

This operation was introduced for binary elliptic curves by López and Da-
hab [27], for Montgomery models of elliptic curves by Okeya and Sakurai [31],
and for short Weierstrass models of elliptic curves by Brier and Joye [8]. We
extend these techniques to genus 2 in §6 and §7.

3 Uniform one-dimensional scalar multiplication

Algorithm 1 is a template for uniform one-dimensional scalar multiplication; it
is suitable for use anywhere in curve-based cryptosystems where the calculation
(m,P) 7→ [m]P is required, but especially those where m is secret. Algorithm 1
applies the Project-pseudomultiply-Recover pattern to lift the x-only Mont-
gomery ladder for pseudomultiplication in G/ 〈±1〉 to a full scalar multiplication
routine for G, generalizing and abstracting the methods of [27], [31], and [8].

Input : A positive integer m =
∑β−1

i=0
mi2

i, with mβ−1 6= 0, and an element P
of G

Output: R = [m]P
1 xP ← Project(P) ;
2 (t1, t2)← (xP , xDBL(xP)) ;
3 for i = β − 2 down to 0 do

4 if mi = 0 then

5 (t1, t2)← xDBLADD(t1, t2, xP) ;
6 else

7 (t2, t1)← xDBLADD(t2, t1, xP) ;
8 end

9 end

10 R← Recover(P, t1, t2) ;
11 return R ;

Algorithm 1: A one-dimensional uniform scalar multiplication template,
based on the Montgomery ladder

Lemma 1. Let m be a non-negative integer of bitlength β, and P an element

of G. Algorithm 1 computes [m]P using one call to Project, one call to xDBL,

β − 1 calls to xDBLADD, and one call to Recover.

Proof. Line 1 of Algorithm 1 calls Project to map P into G/ 〈±1〉. Lines 2-9 are
just the standard Montgomery ladder [29]. At the end of each of the β iterations
of the loop (each of which calls xDBLADD once), we have

(t1, t2) = (x([⌊m/2i⌋]P), x([⌊m/2i⌋+ 1]P)) ;

so at the end of the loop, at Line 10, (t1, t2) = (x([m]P), x([m]P ⊕ P)). The
Recover(P, t1, t2) in Line 10 therefore yields [m]P . ⊓⊔

In its abstract form, Algorithm 1 is uniform and constant-time with respect
to fixed-length m. In practice, the implementation of xDBLADD must also be
uniform and constant-time. If uniform, constant-time behaviour is required with
respect to P , then the implementation of Project must also be uniform and
constant-time.

4 Uniform two-dimensional scalar multiplication

Algorithm 3 is a template for uniform two-dimensional scalar multiplication. It
is intended for use in cryptographic routines that require computing [m]P⊕ [b]Q,
especially when at least one of m and n are secret, but it is also useful for imple-
menting endomorphism-accelerated scalar multiplications, which compute [m]P
as [m0]P ⊕ [m1]φ(P). Algorithm 3 applies the Project-pseudomultiply-Recover
pattern to a pseudomultiplication based on Bernstein’s binary differential addi-
tion chain [2]. Our algorithm is similar to its x-only counterpart, which was used
(without any proof of correctness) in [14].

4.1 Bernstein’s binary differential addition chain

Bernstein defined his binary differential addition chain in [2, §4] as follows. First,
set

C0(0, 0) = C1(0, 0) := ((0, 0), (1, 0), (0, 1), (1,−1)) ;

then the chain CD(A,B) is defined recursively by

CD(A,B) := Cd(a, b) || (O,E,M)

where || denotes concatenation, O, E, and M are defined by

O := (A+ (A+ 1 mod 2), B + (B + 1 mod 2)) , (1)

E := (A+ (A+ 0 mod 2), B + (B + 0 mod 2)) , (2)

M := (A+ (A+D mod 2), B + (B +D + 1 mod 2)) , (3)

and a, b, and d are defined by

a := ⌊A/2⌋ , b := ⌊B/2⌋ , d :=







D if a ≡ A and b ≡ B (mod 2) ,

0 if a ≡ A and b 6≡ B (mod 2) ,

1 if a 6≡ A and b ≡ B (mod 2) ,

1−D if a 6≡ A and b 6≡ B (mod 2) .

Observe that O contains two odd integers, E two even integers, and M is
“mixed”, with one even and one odd integer. The differences M − O, M − E,
and O−E depend only on D and the parities of A and B, as shown in Table 1.

Table 1. The differences between M , O, and E as functions of D and A,B (mod 2).

A (mod 2) B (mod 2) O − E M −O M − E

0 0 (1, 1) (D − 1,−D) (D, 1−D)
0 1 (1,−1) (D − 1, D) (D,D − 1)
1 0 (−1, 1) (1−D,−D) (−D, 1−D)
1 1 (−1,−1) (1−D,D) (−D,D − 1)

By definition, the triple (O,E,M) contains three of the four pairs (A,B),
(A + 1, B), (A,B + 1), and (A + 1, B + 1). The missing pair is (A + (A +D +
1 mod 2), B + (B +D mod 2)), from which it follows immediately that

C(A mod 2)(A,B) contains (A,B) .

Lemma 2. With the notation above: Suppose (a, b) 6= (0, 0), and write o, e,m
for the last three terms of Cd(a, b), so CD(A,B) = (. . . , o, e,m,O,E,M). Then
O, E, and M can be expressed in terms of o, e, m, D, and the parities of A, B,

a, and b using the relations in Table 2.

Proof. The result follows—after elementary but lengthy calculations—from the
definition of CD(A,B), considerations of parity, and the values in Table 1 applied
to o, e, and m, with d derived from the first four columns. ⊓⊔

Table 2. Relations between the adjacent triples (o, e,m) and (O,E,M).

A−B A− a B − b
D O

difference
E M

difference
(mod 2) (mod 2) (mod 2) of summands of summands

0 0 0 0 o+ e ±(1, 1) 2e m+ e ±(0, 1)
0 0 0 1 o+ e ±(1, 1) 2e m+ e ±(1, 0)
0 0 1 0 o+ e ±(1, 1) 2m m+ e ±(0, 1)
0 0 1 1 o+ e ±(1, 1) 2m m+ o ±(1, 0)
0 1 0 0 o+ e ±(1, 1) 2m m+ o ±(0, 1)
0 1 0 1 o+ e ±(1, 1) 2m m+ e ±(1, 0)
0 1 1 0 o+ e ±(1, 1) 2o m+ o ±(0, 1)
0 1 1 1 o+ e ±(1, 1) 2o m+ o ±(1, 0)
1 0 0 0 o+ e ±(1,−1) 2e m+ e ±(0, 1)
1 0 0 1 o+ e ±(1,−1) 2e m+ e ±(1, 0)
1 0 1 0 o+ e ±(1,−1) 2m m+ e ±(0, 1)
1 0 1 1 o+ e ±(1,−1) 2m m+ o ±(1, 0)
1 1 0 0 o+ e ±(1,−1) 2m m+ o ±(0, 1)
1 1 0 1 o+ e ±(1,−1) 2m m+ e ±(1, 0)
1 1 1 0 o+ e ±(1,−1) 2o m+ o ±(0, 1)
1 1 1 1 o+ e ±(1,−1) 2o m+ o ±(1, 0)

4.2 Encoding the chain

Our aim is to use Cm0
(m,n) to compute x([m]P ⊕ [n]Q), where

m =

β−1
∑

i=0

mi2
i and n =

β−1
∑

i=0

ni2
i .

Treating the mi and ni as bits, with ⊕ denoting binary addition (xor) and ⊗
binary multiplication (and), we define the sequence of transition vectors

ci := ((mi ⊕ ni), (mi ⊕mi+1), (ni ⊕ ni+1), di) for 0 ≤ i < β − 1 ,

where d0 := m0 and

di+1 := ((di ⊕ 1)⊗ (mi ⊕mi+1))⊕ (di ⊗ (ni ⊕ ni+1 ⊕ 1)) for i ≥ 0 .

The coordinates of ci correspond to the first four columns of Table 2, with
A = ⌊m/2i⌋, a = ⌊m/2(i+1)⌋, B = ⌊n/2i⌋, b = ⌊n/2(i+1)⌋, D = di, and d = di+1.

In view of Lemma 2, given m and n, we can iteratively reconstruct the entire
chain Cm0

(m,n) from dβ−1 and the sequence of transition vectors c0, . . . , cβ−2.
Algorithm 2 computes precisely this data to encode Cm0

(m,n). We note that
the ci also encode the difference elements required for each differential addition.

4.3 Two-dimensional scalar multiplication

If we map each pair (a, b) in Cm0
(m,n) to the element x([a]P ⊕ [b]Q) in G/ 〈±1〉,

then Cm0
(m,n) yields a method of computing x([m]P⊕[n]Q) using a sequence of

Input : Positive β-bit integers m =
∑β−1

i=0
mi2

i and n =
∑β−1

i=0
ni2

i.
Output: A sequence C of β − 1 transition vectors and one additional bit dβ−1,

encoding the differential addition chain Cm0
(m,n).

1 C ← [] ;
2 d← m0 ;
3 for i← 0 up to β − 2 do

4 Append ((mi ⊕mi+1), (ni ⊕ ni+1), (mi+1 ⊕ ni+1), d) to C ;
5 d← ((d⊕ 1)⊗ (mi ⊕mi+1))⊕ (d⊗ (ni ⊕ ni+1 ⊕ 1)) ;

6 end

7 return (C, d) ;

Algorithm 2: ChainEncoding: Computes and encodes Bernstein’s two-
dimensional “binary” differential addition chain

xADDs (and xDBLs) with the fixed differences x(P), x(Q), x(P⊕Q), and x(P⊖Q).
Thus, the sequence of transition vectors in our encoding of Cm0

(m,n) gives us
a natural iterative algorithm for computing x([m]P ⊕ [n]Q) starting from the
fixed differences. Using this as the core of our Project-pseudomultiply-Recover
pattern yields Algorithm 3, which computes [m]P ⊕ [n]Q in G.

Theorem 1. Let P and Q be elements of G, let m and n be positive integers,

and let β be the bitlength of max(m,n). Algorithm 3 computes [m]P ⊕ [n]Q using

one call to ADD, three calls to Project, β calls to each of xADD and xDBLADD,

and one call to Recover.

Proof. Algorithm 3 begins by calling Algorithm 2 to compute the sequence of
transition vectors and dβ−1 for the given m and n. Lines 2–4 compute the re-
quired differences xP := x(P), xQ := x(Q), x⊕ := x(P⊕Q), and x⊖ := x(P⊖Q)
by computing S := P ⊕Q with the single call to ADD, then using the three calls
to Project to compute xP , xQ, and x⊕ = x(S), before x⊖ = xADD(xP , xQ, x⊕).

Throughout the rest of the algorithm O corresponds to the odd-odd pair, E
to the even-even pair, and M to the mixed pair in a segment of Cm0

(m,n), where
each pair (a, b) is associated with x([a]P ⊕ [b]Q). Lines 5–12 use a single xDBLADD
to initialize O, E, and M such that Cdβ−1

(mβ−1, nβ−1) = C0(0, 0)||(O,E,M).
Lines 13–31 iterate over the sequence of transition vectors to compute the last
three elements of Cm0

(m,n). After each iteration, the triple (O,E,M) satisfies

Cdi
(⌊m/2i⌋, ⌊n/2i⌋) = Cdi+1

(⌊m/2i+1⌋, ⌊n/2i+1⌋) || (O,E,M) .

Each iteration requires two differential additions and a pseudodoubling, but we
observe that the pseudodoubling always applies to one of the arguments of a
differential addition, so each of the β − 1 iterations requires exactly one xADD

and one xDBLADD.
After the loop is completed, at Line 33, Eqs. (1), (2), and (3) imply

O = x(R⊕∆O) , E = x(R ⊕∆E) , and M = x(R ⊕∆M) ,

where R = [m]P ⊕ [n]Q and ∆O, ∆E , and ∆M are given in the following table:

Input : Positive β-bit integers m =
∑β−1

i=0
mi2

i and n =
∑β−1

i=0
ni2

i with mβ−1

and nβ−1 not both zero, and elements P,Q of G
Output: R = [m]P ⊕ [n]Q

1 ((c0, . . . , cβ−2), dβ−1)← ChainEncoding(m,n) ;
2 S ← ADD(P,Q) ;
3 (xP , xQ, x⊕)← (Project(P),Project(Q),Project(S)) ;
4 x⊖ ← xADD(xP , xQ, x⊕) ;
5 switch (mβ−1, nβ−1, dβ−1) do
6 case (0, 1, 0) : (M, (E,O))← (xQ, xDBLADD(xQ, xP , x⊖)) ;
7 case (0, 1, 1) : (O, (E,M))← (x⊕, xDBLADD(xQ, x⊕, xP)) ;
8 case (1, 0, 0) : (O, (E,M))← (x⊕, xDBLADD(xP , x⊕, xQ)) ;
9 case (1, 0, 1) : (M, (E,O))← (xP , xDBLADD(xP , xQ, x⊖)) ;

10 case (1, 1, 0) : (O, (E,M))← (x⊕, xDBLADD(x⊕, xP , xQ)) ;
11 case (1, 1, 1) : (O, (E,M))← (x⊕, xDBLADD(x⊕, xQ, xP)) ;

12 endsw

13 for i← β − 2 down to 0 do

14 switch ci do
15 case (0, 0, 0, 0) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(E,M, xQ)) ;
16 case (0, 0, 0, 1) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(E,M, xP)) ;
17 case (0, 0, 1, 0) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(M,E, xQ)) ;
18 case (0, 0, 1, 1) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(M,O, xP)) ;
19 case (0, 1, 0, 0) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(M,O, xQ)) ;
20 case (0, 1, 0, 1) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(M,E, xP)) ;
21 case (0, 1, 1, 0) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(O,M, xQ)) ;
22 case (0, 1, 1, 1) : (O, (E,M))← (xADD(O,E, x⊕), xDBLADD(O,M, xP)) ;
23 case (1, 0, 0, 0) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(E,M, xQ)) ;
24 case (1, 0, 0, 1) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(E,M, xP)) ;
25 case (1, 0, 1, 0) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(M,E, xQ)) ;
26 case (1, 0, 1, 1) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(M,O, xP)) ;
27 case (1, 1, 0, 0) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(M,O, xQ)) ;
28 case (1, 1, 0, 1) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(M,E, xP)) ;
29 case (1, 1, 1, 0) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(O,M, xQ)) ;
30 case (1, 1, 1, 1) : (O, (E,M))← (xADD(O,E, x⊖), xDBLADD(O,M, xP)) ;

31 endsw

32 end

33 switch (m0, n0) do
34 case (0, 0) : R← Recover(S,E,O) ;
35 case (0, 1) : R← Recover(P,M,O) ;
36 case (1, 0) : R← Recover(P,M,E) ;
37 case (1, 1) : R← Recover(S,O,E) ;

38 endsw

39 return R ;

Algorithm 3: Two-dimensional uniform scalar multiplication template

(m0, n0) ∆O ∆E ∆M if d0 = 0 ∆M if d0 = 1 [m]P ⊕ [n]Q
(0, 0) P ⊕Q 0G Q P Recover(P ⊕Q,E,O)
(0, 1) P Q 0G P ⊕Q Recover(P,M,O)
(1, 0) Q P P ⊕Q 0G Recover(P,M,E)
(1, 1) 0G P ⊕Q P P ⊕Q Recover(P ⊕Q,O,E)

In each case, we can recover [m]P⊕[n]Q by applying Recoverwith the arguments
specified by the last column of the corresponding row. This is precisely what is
done in Lines 33-38; Line 39 then returns the result, [m]P ⊕ [n]Q. ⊓⊔

Like Algorithm 1, Algorithm 3 is uniform and constant-time in its abstract
form, at least for fixed-length multiscalars (m,n). In practice, for Algorithm 3
to be uniform and constant-time with respect to m and n, the implementa-
tions of xADD and xDBLADD must be uniform and constant-time. For uniform and
constant-time behaviour with respect to P and Q, the implementations of ADD
and Project must also be uniform and constant-time.

Remark 2. The core of Algorithm 3 is similar to the algorithm in [14, App. C],
but with a different (and slightly simpler) encoding of the addition chain. Here,
the i-th transition vector is ((mi⊕ni), (mi⊕mi+1), (ni⊕ni+1), di); in [14, App. C]
it is ((mi ⊕mi+1 ⊕ ni ⊕ ni+1), (mi ⊕mi+1), (mi ⊕ ni), di), and the order of the
vectors is reversed (as is the order of the loop iterations).

Remark 3. Implementers should notice that every adjacent pair of xADD and
xDBLADD operations in Algorithm 3 share one operand in their differential ad-
ditions. Further savings might therefore be made by sharing a few intermediate
calculations between the xADD and xDBLADD calls—that is, by implicitly defining
an xDBLADDADD operation, as in [14, App. C]. We have not done this here, for
two reasons. First, it somewhat obscures the fundamental symmetry of the addi-
tion chain. Second, looking ahead at the explicit formulæ for xADD and xDBLADD

suggests that there are no intermediate calculations that can be shared in the
elliptic curve scenarios. However, close inspection of the fast Kummer arithmetic
in §7.3 reveals that two adjacent differential additions sharing a common sum-
mand can be merged to save 8 field additions. It is unclear to us that whether
this potential saving would give a net benefit after the code complexity required
to perform the merging, so we have not included this potential saving in our
operation counts.

Remark 4. These techniques should readily extend to the higher-dimensional
Montgomery-like differential addition chains described by Brown [9]. We do not
investigate this here.

5 Efficient scalar multiplication on elliptic curves

We now pass from the abstract to the concrete. Applying the one-dimensional
pattern to elliptic curves, we recover Okeya–Sakurai-style multiplication algo-
rithms; applying the two-dimensional pattern yields something new.

5.1 Montgomery models

The most obvious application of our methods is to elliptic curves with Mont-
gomery models

BY 2Z = X(X2 +AXZ + Z2) ,

which are defined to optimize the xADD, xDBL, and xDBLADD operations. Indeed,
historically, the first appearance of the Project-pseudomultiply-Recover pat-
tern was in the context of one-dimensional scalar multiplication on Montgomery
models [31]. Important examples of Montgomery curves include Curve25519,
recently recommended for standardization by the CFRG.

In this context, Project : (x, y) 7→ x is trivially computed. The ADD, xADD,
xDBL, and xDBLADD operations are all presented—and thoroughly costed—in the
EFD [6]. The Recover operation was derived by Okeya and Sakurai in [31, §3].
The operation counts for all of these operations are compiled in Table 3.

Table 3. Costs of operations for projective Montgomery models By2 = x(x2+Ax+1),
where mA denotes multiplications by A and (A+2)/4, and mB denotes multiplications
by B. A point is normalized if its projective Z-coordinate has been scaled to 1.

Algorithm M S mA mB a I Conditions

ADD 1 1 0 0 5 1 P and Q normalized
Project 0 0 0 0 0 0 —

xDBL 2 5 1 0 0 0 —
xADD 4 2 0 0 6 0 —
xADD 3 2 0 0 6 0 P ⊖Q normalized

xDBLADD 6 4 1 0 8 0 —
xDBLADD 5 4 1 0 8 0 P ⊖Q normalized
Recover 13 1 1 1 8 1 P normalized

We now apply the Project-pseudomultiply-Recover pattern using the rou-
tines above. In the one-dimensional case, we recover the Okeya–Sakurai algo-
rithm [31].

Theorem 2. Let E/Fq be an elliptic curve in Montgomery form.

1. Let P be a point in E(Fq) \ E [2], and let m be a positive β-bit integer. Then
Algorithm 1 computes [m]P in

(5β + 10)M+ (4β + 2)S+ (β + 1)mA + 1mB + (8β + 6)a+ 1I .

2. Let P and Q be points in E(Fq) \ E [2], and let m and n be positive β-bit
integers. Then Algorithm 3 computes [m]P ⊕ [n]Q in

(8β + 14)M+ (6β + 2)S+ (β + 1)mA + 1mB + (14β + 13)a+ 2I .

5.2 Edwards models

As a byproduct of Theorem 2, we obtain new scalar multiplication algorithms for
Edwards models [16]. Indeed, every twisted Edwards model can be transformed
into a Montgomery model with a linear change of coordinates, so one option
to perform scalar multiplications on Edwards curves is to pass to and from
an associated Montgomery model, making use of the operations summarized in
Table 3. Important examples of Edwards models in practice include Ed25519 [5]
and Goldilocks [22].

Another option here is to exploit pseudomultiplication formulæ that are na-
tive to Edwards curves, as described by Gaudry and Lubicz [20, §6.2]. In this
case, for Edwards curves E/Fq : x

2 + y2 = 1+ dx2y2 with d = r2 and r ∈ Fq, we
define Project : (x, y) 7→ y and use the formulæ in the EFD [6] to compute the
pseudomultiplication via Algorithm 1.

The Recover : (P, y(Q), y(Q ⊕ P)) 7→ Q = (x(Q), y(Q)) operation is defined
by rearranging the Edwards addition law between P and Q, to make x(Q) the
subject, i.e.,

x(Q) =
y(Q ⊕ P)− y(Q)y(P)

x(P) (dy(P)y(Q)y(Q ⊕ P)− 1)
.

5.3 Scalar multiplication on short Weierstrass models

Not every elliptic curve has a Montgomery or Edwards model; the most general
form for an elliptic curve over Fq in characteristic greater than 3 is the short
Weierstrass model

E : y2 = x3 +Ax+B ⊂ P
2 .

Important examples of curves commonly implemented as Weierstrass models
include the NIST [30] and Brainpool curves [7].

Our key subroutines are implemented as follows. For brevity, we use affine
coordinates here, but the resulting formulæ are easily projectivized: see Brier
and Joye or the EFD. In this context, Project : P = (x, y) 7→ x is trivially
computed. The ADD, xADD, and xDBL, and xDBLADD operations are all specified as
efficient straight-line programs in the EFD [6]. Brier and Joye describe Recover
for short Weierstrass models in [8, Prop. 3]: it maps (P, x(Q), x(P ⊕ Q)) to
Q = (x(Q), y(Q)), where

y(Q) =
2B + (A+ x(P)x(Q))(x(P) + x(Q))− x(P ⊕Q)(x(P) − x(Q))2

2y(P)
.

Table 4 summarizes the operation counts for all of this routines.
Applying Algorithm 1 with these subroutines yields the scalar multiplica-

tion algorithm for Weierstrass models in [8]. Applying Algorithm 3 with these
subroutines yields a new algorithm for two-dimensional scalar multiplication on
Weierstrass curves.

Theorem 3. Let E/Fq be an elliptic curve in short Weierstrass form.

Table 4. Costs of operations for projective short Weierstrass models y2 = x3 + ax+ b,
where mb denotes multiplications by b, 2b and 4b. A point is normalized if its projective
Z-coordinate has been scaled to 1.

Algorithm M S ma mb a I Conditions

ADD 1 1 0 0 4 1 P and Q normalized
Project 0 0 0 0 0 0 —

xDBL 2 5 1 2 8 0 —
xADD 7 2 1 1 6 0 —
xADD 6 2 1 1 4 0 P ⊖Q normalized

xDBLADD 9 7 2 3 12 0 —
xDBLADD 8 7 2 3 12 0 P ⊖Q normalized
Recover 11 2 1 1 7 1 P normalized

1. Let P be a point in E(Fq) \ E [2], and let m be a positive β-bit integer. Then
Algorithm 1 computes [m]P in

(8β + 5)M+ 7βS+ 2βma + 3βmb + (12β + 3)a+ 1I .

2. Let P and Q be points in E(Fq) \ E [2], and let m and n be positive β-bit
integers. Then Algorithm 3 computes [n]P ⊕ [n]Q in

(14β + 12)M+ (9β + 3)S+ (3β + 1)ma + (4β + 1)mb + (16β + 11)a+ 2I .

Proof. Take the values from Table 4 in Lemma 1 (for the first part) and Theo-
rem 1 (for the second). ⊓⊔

6 Genus 2 Jacobians and General Kummer Surfaces

We now turn our focus to genus 2 cryptosystems, where G is (a subgroup of) the
Jacobian JC of a genus 2 curve

C : y2 = f(x) = f6x
6 + f5x

5 + · · ·+ f1x+ f0 over Fq .

Elements of JC(Fq) are presented in their standard Mumford representation:

P ∈ JC(Fq)←→ 〈a(x) = x2 + a1x+ a0, b(x) = b1x+ b0〉

where a1, a0, b1, and b0 are in Fq and

b(x)2 ≡ f(x) (mod a(x)) .

The quotient G/ 〈±1〉 is (a subset of) a Kummer surface, which is a quartic
surface in P

3. There are two main ways to represent the Kummer: the “general”
model Kgen

C (see Cassels and Flynn [11, Ch. 3]) and the “fast” model Kfast
C

algorithmically developed by Chudnovsky and Chudnovsky [12], and introduced
in cryptography by Gaudry [19].

Broadly speaking, the fast Kummer model corresponds to the Montgomery
model for elliptic curves, while the general model corresponds to the Weierstrass
model. Indeed, as in the elliptic curve situation, fast Kummers offer significant
gains in performance and uniformity (indeed, they are at the heart of a number
of record-breaking Diffie–Hellman implementations), but at the price of a lot of
rational 2-torsion: hence, not every Kummer can be put in fast form.

We will define the Project and Recover operations for general Kummers;
since any Kummer surface can be transformed into a general model over the
ground field, these Project and Recover routines can easily be specialized to
fast Kummers (or to any other interesting models of Kummer surfaces). We
do not lose much in taking this approach compared with deriving a new, spe-
cialized Project and Recover for Jacobians with fast Kummers from scratch,
because Algorithms 1 and 3 only call Project a few times, and Recover once.
Scalar pseudomultiplication on general Kummers is relatively slow, and has held
little interest for cryptographers thus far; we briefly discuss their arithmetic and
pseudomultiplication in §6.5.

6.1 Genus 2 arithmetic and side-channel attacks

The group law on JC (and hence the ADD operation) is typically computed using
Cantor’s algorithm, specialized to genus 2. This style of arithmetic has a seri-
ous drawback in cryptographic contexts: it is highly susceptibile to simple side-
channel attacks. Similar to the textbook addition for short Weierstrass models
of elliptic curves, Cantor’s algorithm in genus 2 treats several input cases dif-
ferently, branching off into distinct explicit computations. Explicit formulæ that
are derived for generic additions fail to compute correctly when one or both
of the inputs are special points—that is, points in JC where a(x) = x − α or
a(x) = (x−α)2. While such special points are sparse enough in JC that random
scalar multiplications do not encounter them, they are plentiful enough that at-
tackers could easily mount exceptional procedure attacks [24], forcing legitimate
users into special cases and using timing variabilities to recover secret data.

The Project-pseudomultiply-Recover approach detailed in §6.2 addresses
this problem. Like x-only (pseudo)scalar multiplication on elliptic curves, the
explicit formulæ for doublings and differential additions on certain Kummer
surfaces associated to JC are well behaved on all inputs, including the images of
special points in JC under the Project map. The only time special points might
be encountered is at the two end points of the scalar multiplication; but suit-
able point validation can detect and reject special points as inputs, and special
outputs in JC are not the goal of an exceptional procedure attack—adversaries
can only hope to trigger exceptional points early on in a scalar multiplication,
where the number of possible intermediate points is subexponential.

6.2 Point recovery on the general Kummer

The general model of the Kummer surface Kgen
C associated to JC is defined by

Kgen
C : K2(ξ1, ξ2, ξ3)ξ

2
4 +K1(ξ1, ξ2, ξ3)ξ4 +K0(ξ1, ξ2, ξ3) = 0 , (4)

where

K2 = ξ22 − 4ξ1ξ3,

K1 = −2(2f0ξ31 + f1ξ
2
1ξ2 + 2f2ξ

2
1ξ3 + f3ξ1ξ2ξ3 + 2f4ξ1ξ

2
3 + f5ξ2ξ

2
3 + 2f6ξ

3
3),

K0 = (f2
1 − 4f0f2)ξ

4
1 − 4f0f3ξ

3
1ξ2 − 2f1f3ξ

3
1ξ3 − 4f0f4ξ

2
1ξ

2
2

+ 4(f0f5 − f1f4)ξ
2
1ξ2ξ3 + (f2

3 + 2f1f5 − 4f2f4 − 4f0f6)ξ
2
1ξ

2
3 − 4f0f5ξ1ξ

3
2

+ 4(2f0f6 − f1f5)ξ1ξ
2
2ξ3 + 4(f1f6 − f2f5)ξ1ξ2ξ

2
3 − 2f3f5ξ1ξ

3
3 − 4f0f6ξ

4
2

− 4f1f6ξ
3
2ξ3 − 4f2f6ξ

2
2ξ

2
3 − 4f3f6ξ2ξ

3
3 + (f2

5 − 4f4f6)ξ
4
3 .

6.3 Projection from Jacobians to general Kummers

Project implements the map JC → Kgen
C described in [11, Eqs. (3.1.3–5)]; it

maps generic points 〈x2 + a1x + a0, b1x + b0〉 in JC to (ξ1 : ξ2 : ξ3 : ξ4) in Kgen
C ,

where

ξ1 = 1 , ξ2 = −a1 , ξ3 = a0 , and (5)

ξ4 = b21 + (a21 − a0)
(
f5a1 − f6(a

2
1 − a0)

)
+ a1(f3 − f4a1)− f2 . (6)

This costs 5M+ 2S+ 7a (saving 1M if f6 = 0).

6.4 Recovering Jacobian points from general Kummers

We now derive explicit formulæ for

Recover : (P, x(Q), x(Q ⊕ P)) 7−→ Q

in genus 2. We follow the approach of Okeya–Sakurai [31] and Brier–Joye [8] for
elliptic curves, rewriting the equations used for computing x(Q⊕P) in terms of
P = (x(P), y(P)) and Q = (x(Q), y(Q)), making y(Q) the unknown. We may
suppose that P and Q are nonzero and not points of order 2.

Suppose we are given4

P = 〈x2 + a1(P)x+ a0(P), b1(P)x + b0(P)〉 ∈ JC(Fq) ,

x(Q) = (1 : ξ2 : ξ3 : ξ4) ∈ Kgen
C (Fq) ,

x(Q ⊕ P) = (1 : ξ⊕2 : ξ⊕3 : ξ⊕4) ∈ Kgen
C (Fq) ;

we want to Recover

Q = 〈x2 + a1(Q)x+ a0(Q), b1(Q)x+ b0(Q)〉 ∈ JC(Fq) .

4 We suppose that the inputs x(Q), x(Q ⊕ P), and x(Q ⊖ P) are normalized here,
to simplify the exposition. In practice, we use projectivized forms of these formulæ
(which corresponds to replacing ξ2, ξ3, and ξ4 with ξ2/ξ1, ξ3/ξ1, and ξ4/ξ1, etc.),
in order to handle the non-normalized inputs that we encounter at the end of our
addition chains. The input point P in JC can be presumed to be normalized, since
it is the input to the scalar multiplication routine.

We already have a1(Q) = −ξ2 and a0(Q) = ξ3 from Eq. (5); it remains to
compute b1(Q) and b0(Q).

Okeya and Sakurai noticed that the formulæ for y-coordinate recovery on
Montgomery curves are simpler if x(Q ⊖ P) is also known (see [31, pp. 129–
130]); we observed the same simplification in genus 2, where it was evident that
computing x(Q⊖P) from x(Q), x(P) and x(Q⊕P) (using one more differential
addition on the corresponding Kummer) yielded a faster overall recovery. We
therefore begin our Recover with a call to xADD, to compute

x(Q ⊖ P) = (1 : ξ⊖2 : ξ⊖3 : ξ⊖4) = xADD(Q,P, x(Q ⊕ P)) .

Since P and Q are nonzero, they correspond to unique degree-2 divisors on
C (cf. [11, Ch. 1]):

P ←→ [(uP , vP) + (u′
P , v

′
P)] , Q←→ [(uQ, vQ) + (u′

Q, v
′
Q)] .

We do not compute the values of uP , vP , u
′
P , v

′
P , uQ, vQ, u

′
Q, and v′Q (which are

generally defined over a quadratic extension): here they simply serve as formal
devices, to aid our derivation of recovery formulæ. Let

G1 := E1 + E2 , G2 := u′
PE1 + uPE2 ,

G3 := E3 + E4 , G4 := u′
QE3 + uQE4 ,

where

E1 =
vP

(uP − u′
P)(uP − uQ)(uP − u′

Q)
, E2 =

v′P
(u′

P − uP)(u′
P − uQ)(u′

P − u′
Q)

,

E3 =
vQ

(uQ − u′
P)(uQ − uP)(uQ − u′

Q)
, E4 =

v′Q
(u′

Q − uP)(u′
Q − u′

P)(u
′
Q − uQ)

.

The Gi are functions of P and Q, because they are symmetric with respect to
(uP , vP)↔ (u′

P , v
′
P) and (uQ, vQ) ↔ (u′

Q, v
′
Q); below, we will compute them as

functions of P , x(Q ⊕ P), and x(Q ⊖ P). For notational convenience, we define

Z1 := −(ξ2 + a1(P)) , Z2 := ξ3 − a0(P) , (7)

Z3 := a1(P)ξ3 + a0(P)ξ2 , Z4 := ξ3Z2 − ξ2Z3 , (8)

D := Z2
2 − Z1Z3 , (9)

∆ := −4G2
2 + 2(ξ⊕2 + ξ⊖2)G1G2 − 2(ξ⊕3 + ξ⊖3)G2

1 , (10)

and

T := f6 −G2
1 −G2

3

= f6 −G2
1 −

1

D2

(
ξ4D + f0Z

2
1 − f1Z1Z2 + f2Z

2
2 − f3Z2Z3

+f4Z
2
3 − f5Z3Z4 + f6Z

2
4

)

. (11)

We now use the fact that the cubic polynomial

l(x) = E1(x− u′
P)(x− uQ)(x − u′

Q) + E2(x− uP)(x− uQ)(x − u′
Q)

+ E3(x − uP)(x − u′
P)(x− u′

Q) + E4(x− uP)(x− u′
P)(x− uQ)

= (G1x−G2)(x
2 + a1(Q)x+ a0(Q)) + (G3x−G4)(x

2 − ξ2x+ ξ3)

satisfies ℓ(x) ≡ b(x) mod a(x) when 〈a(x), b(x)〉 is the Mumford representation of
P , Q or ⊖(P ⊕Q) (this is just the geometric definition of the group law on JC ;
the cubic ℓ(x) is analogous to the line through P , Q, and ⊖(P ⊕ Q) in the
classic elliptic curve group law). Together with b(x)2 ≡ f(x) (mod a(x)), which
is satisfied by the Mumford representation 〈a(x), b(x)〉 of every point on JC , this
gives the relations

(
b1(Q)
b0(Q)

)

=

(
ξ2Z1 + Z2 Z1

ξ3Z1 Z2

)(
G3

G4

)

, (12)

(
G3

G4

)

=
T

∆

(
ξ⊖3 − ξ⊕3 ξ⊕2 − ξ⊖2

ξ⊕2 ξ⊖3 − ξ⊖2 ξ⊕3 ξ⊕3 − ξ⊖3

)(
G1

G2

)

, (13)

and (
G1

G2

)

=
1

D

(
Z2 −Z1

−a0(P)Z1 a1(P)Z1 − Z2

)(
b1(P)
b0(P)

)

. (14)

Our Recover operation is now defined as follows: first, we use Eqs. (7) and (8)
to compute the Zi; then Eq. (9) yields D. Then we can use Eq. (14) to obtain
G1 and G2, which we use to compute ∆ and T using Eqs. (10) and (11). Equa-
tion (13) then yields G3 and G4, which we substitute into Eq. (12) to compute
b1(Q) and b0(Q). We have thus recovered the full point

Q = 〈x2 + a1(Q)x+ a0(Q), b1(Q)x+ b0(Q)〉

in JC . Altogether, computing the map (P, x(Q), x(Q⊕P), x(Q⊖P)) 7→ Q costs
71M+8S+8mc+35a+1I; adding the cost of computing x(Q⊖P) via an xADD

operation, we obtain the full cost of computing Recover(P, x(Q), x(Q ⊕ P)).

Remark 5. It is worth noting that ξ⊕4 and ξ⊖4 do not appear in our recovery
procedure; this may be useful in scenarios where it is advantageous to omit their
computation or transmission.

6.5 Scalar multiplication on Jacobians via general Kummers

The use of general Kummers in cryptography was investigated by Smart and
Siksek [34] and Duquesne [15]. While they represent a natural generalization of
x-only arithmetic for elliptic curves, in their full generality they do not offer com-
petitive performance. The xADD and xDBL operations are defined by complicated
biquadratic forms in the ξi (see [11]), which are hard to evaluate quickly for gen-
eral curve parameters. While these formulæ are completely compatible with our

Project-pseudomultiply-Recover pattern, and yield scalar multiplication algo-
rithms that may be useful to number theorists, the cryptographic applications
of these algorithms are à priori limited. We will therefore skip any investigation
of these scalar multiplication algorithms here, and move on directly to Gaudry’s
fast Kummer surfaces.

We remark, nevertheless, that the use of these biquadratic forms in con-
junction with the Project and Recover defined above yields a solution to the
problem of defining uniform and constant-time scalar multiplication algorithms
for general genus 2 Jacobians. We leave the eventual optimization of these al-
gorithms as an open problem, along with their application to Jacobians with
special endomorphism structure, or Jacobians whose Kummers can be put into
intermediate forms between the general and fast models.

7 Efficient Scalar Multiplication via Fast Kummers

While the performance of general Kummer models is somewhat disappointing,
Gaudry [19] showed if we allow a certain 2-torsion structure on the Jacobian,
then an alternative classical model for the Kummer (investigated algorithmi-
cally by Chudnovsky and Chudnovsky [12]) yields a dramatic speedup, compet-
itive with—and regularly outperforming—elliptic curve arithmetic. Jacobians
equipped with these “fast” Kummers are ideal candidates for our techniques;
here we use the model with squared theta coordinates described in [13, Ch. 4].

7.1 Construction of fast Kummers

Suppose we have a, b, c, d, e, and f in Fq \ {0} such that

A := a+ b+ c+ d , B := a+ b− c− d ,

C := a− b+ c− d , D := a− b− c+ d

are nonzero, and

e =
1 + α

1− α
f where α2 =

CD

AB
.

We set

λ =
ac

bd
, µ =

ce

df
, ν =

ae

bf
,

and define an associated genus 2 curve C in Rosenhain form:

C : y2 = f(x) = x(x− 1)(x− λ)(x − µ)(x − ν) .

The fast Kummer surface for C is the quartic surface Kfast
C ⊂ P

3 defined by

Kfast
C :

(
(X2 + Y 2 + Z2 + T 2)

−F (XT + Y Z)−G(XZ + Y T)−H(XY + ZT)

)2

= EXY ZT (15)

where

E := 4abcd (ABCD/((ad− bc)(ac− bd)(ab− cd)))2 ,

F := (a2 − b2 − c2 + d2)/(ad− bc) ,

G := (a2 − b2 + c2 − d2)/(ac− bd) ,

H := (a2 + b2 − c2 − d2)/(ab− cd) .

For efficient arithmetic on Kfast
C , we precompute the theta constants

x0 := 1 , y0 := a/b , z0 := a/c , t0 := a/d ,

x′
0 := 1 , y′0 := A/B , z′0 := A/C , t′0 := A/D .

The image of the identity element of JC in Kfast
C is

(a : b : c : d) = (1/x0 : 1/y0 : 1/z0 : 1/d0) ;

we also observe that (A : B : C : D) = (1/x′
0 : 1/y′0 : 1/z

′
0 : 1/d

′
0).

7.2 Projection from Jacobians to fast Kummers

Project implements the map JC → Kfast
C from [13, §5.3], which is defined for

generic points in JC by 〈x2 + a1x+ a0, b1x+ b0〉 7→ (X : Y : Z : T), where

X = a
(
a0(µ− a0)(λ + a1 + ν)− b20

)
,

Y = b
(
a0(νλ− a0)(1 + a1 + µ)− b20

)
,

Z = c
(
a0(ν − a0)(λ + a1 + µ)− b20

)
,

T = d
(
a0(µλ− a0)(1 + a1 + ν)− b20

)
.

This costs 11M+1S+3mc+12a+1I, assuming the output point is normalized
with X = 1.

For special points 〈x−α, β〉 in JC , Project is defined by first adding a point
of order 2 in JC , e.g., adding 〈x−λ, 0〉 to get 〈x2− (α+β)x+αβ, β

α−λ
x− βλ

α−λ
〉,

then using the above map to Kfast
C , where the translation is undone by using the

coordinate permutation-and-negation that corresponds to translation by 〈x −
λ, 0〉 (see [19, §3.4]). Finally, 0JC

(whose Mumford representation is 〈1, 0〉) maps
to (a : b : c : d).

7.3 Basic fast Kummer arithmetic

We recall the formulæ and operation counts for xDBL and xADD on fast Kummers
from [19, §3.2]. If

x(P) = (X1 : Y1 : Z1 : T1) ,

x(Q) = (X2 : Y2 : Z2 : T2) ,

x(P ⊖Q) = (X⊖ : Y⊖ : Z⊖ : T⊖) ,

then xADD maps (x(P), x(Q), x(P ⊖Q)) to (X⊕ : Y⊕ : Z⊕ : T⊕), where

X⊕ = (X ′ + Y ′ + Z ′ + Y ′)2/X⊖ , Y⊕ = (X ′ + Y ′ − Z ′ − Y ′)2/Y⊖ ,

Z⊕ = (X ′ − Y ′ + Z ′ − Y ′)2/Z⊖ , T⊕ = (X ′ − Y ′ − Z ′ + Y ′)2/T⊖ ,

where

X ′ = x′
0(X1 + Y1 + Z1 + T1)(X2 + Y2 + Z2 + T2) ,

Y ′ = y′0(X1 + Y1 − Z1 − T1)(X2 + Y2 − Z2 − T2) ,

Z ′ = z′0(X1 − Y1 + Z1 − T1)(X2 − Y2 + Z2 − T2) ,

T ′ = t′0(X1 − Y1 − Z1 + T1)(X2 − Y2 − Z2 + T2) .

We can compute xADD using 8 squares, 7 products (3 by constants, ignoring the
multiplication by x′

0 = 1), and 4 divisions (or, projectively, another 10 products);
but in our applications, (X⊖ : Y⊖ : Z⊖ : T⊖) is fixed. so we can precompute
1/X⊖, 1/Y⊖, 1/Z⊖, and 1/T⊖, and then the 4 divisions become 4 products.

The xDBL operation is defined by exactly the same formulæ on setting (X2 :
Y2 : Z2 : T2) = (X1 : Y1 : Z1 : T1) and (X⊖ : Y⊖ : Z⊖ : T⊖) = (a : b : c : d) (so
X ′ = x′

0(X1 + Y1 + Z1 + T1)
2, and so on).

The combined xDBLADD operation is outlined in Gaudry [19, §3.3]: we share
the computation of x′

0(X1+Y1+Z1+T1)
2, etc., between the calculation of xDBL

and xADD. The resulting operation costs 16 products and 1 square.
Finally, the function ADD : P,Q→ x(Q⊕P) in JC is computed via the formulæ

in [23, Eq. (12)] at a cost of 22M + 2S+ 1I+ 27a.

7.4 Recovering Jacobian points from fast Kummers

The Recover operation for fast Kummers uses the Recover for general Kummers
(defined in §6.2) as a subroutine. To move between the fast Kummer Kfast

C and
the general Kummer Kgen

C , we modify the map from JC to Kfast
C given in [13,

§5.3] (which was in turn derived from [36]). This gives a linear isomorphism

τ : Kgen
C −→ Kfast

C ,

defined on generic points by

τ : (ξ1 : ξ2 : ξ3 : ξ4) 7−→ (X : Y : Z : T) = (ξ1 : ξ2 : ξ3 : ξ4)M(a, b, c, d)t ,

where

M(a, b, c, d) =







µ(λ+ ν) νλ(1 + µ) ν(λ+ µ) µλ(1 + ν)
−µ −νλ −ν −µλ
µ+ 1 λ+ ν ν + 1 λ+ µ
−1 −1 −1 −1







.

The inverse map τ−1 : Kfast
C → Kgen

C is defined by the matrix (M(a, b, c, d)t)−1.
Since evaluating these linear transformations only involves multiplications by

constants, evaluating τ to map a point from Kgen
C to Kfast

C (or τ−1 to map a
point from Kfast

C back to Kgen
C) costs 16M+ 12a. Since the coordinates on both

Kgen
C and Kfast

C are projective, we can save 1M by scaling one of the entries in
the transformation matrix to 1.

With x : JC → K, the operation Recover : P, x(Q), x(Q ⊕ P) 7→ Q is com-
puted as follows. As was done in §6.2, the first step is to compute x(Q ⊖ P)
from x(P), x(Q) and x(Q ⊕ P) via an xADD operation (note that x(P) was al-
ready obtained during the Project operation). We then use τ−1 to map all four
elements, x(P), x(Q), x(Q ⊕ P) and x(Q ⊖ P) to the corresponding general
Kummer Kgen

C . We can then use the Recover operation on Kgen
C to output a

normalized point Q in Mumford coordinates using 71M+4mc +8S+34a+1I.
Recall from §6.2 that the fourth Kummer coordinate ξ4 is only needed for the
Kummer point corresponding to Q. Thus, the map τ−1 is only computed in full
once (costing 15M + 12a), but for the three other points can omit the fourth
coordinate (costing 11M+ 9a).

In total, including the initial xADD operation (costing 14M+4S+3mc+12a),
the map Recover : P, x(Q), x(Q ⊕ P) 7→ Q when x : JC → Kfast

C costs 133M +
12S+ 7mc + 97a+ 1I. Here we count multiplications by the curve constants fi
as full multiplications.

7.5 Scalar multiplication on Jacobians with fast Kummers

The costs of our key subroutines for fast Kummers are summarized in Table 5.

Table 5. Costs of operations for fast Kummers, where mc is used to denote multiplica-
tions by the theta constants (x0, x

′
0, etc) or by the curve constants (fi). Normalization

refers to the respective projective coordinates.

Algorithm M S mc a I Conditions

ADD 22 2 0 27 1 P and Q normalized
Project 11 1 3 12 1 —

xDBL 0 8 6 16 0 —
xADD 14 4 3 24 0 —
xADD 7 4 3 24 0 x(Q⊖ P) fixed

xDBLADD 17 9 6 32 0 —
xDBLADD 10 9 6 32 0 x(Q⊖ P) fixed
Recover 133 12 7 97 1 P normalized

Theorem 4. Let JC be the Jacobian of a genus 2 curve admitting a fast Kum-

mer surface, as in §7.1.
1. Let P be a point in JC(Fq)\JC[2], and let m be a positive β-bit integer. Then

Algorithm 1 computes [m]P in

(10β + 134)M + (9β + 12)S+ (6β + 10)mc + (32β + 93)a+ 2I .

2. Let P and Q be points in JC(Fq) \ JC [2], and let m and n be positive β-bit
integers. Then Algorithm 3 computes [m]P ⊕ [n]Q in

(17β + 194)M+ (13β + 17)S+ (9β + 16)mc + (56β + 160)a+ 2I .

Proof. Take the values from Table 5 in Lemma 1 for the first part and Theorem 1
for the second, using a simultaneous inversion [29] to replace the 3I (correspond-
ing to the 3 Project operations) by 6M+ 1I. ⊓⊔

Remark 6. As we noted in Remark 1, similar techniques appear in Lubicz and
Robert [28] for general abelian varieties in higher dimension embedded in projec-
tive space via theta functions. After suitable precomputations, their “compatible
addition” operation views the results of Montgomery-like pseudomultiplication
algorithms on a Kummer variety K of dimension g as points on the correspond-
ing abelian variety A embedded in K ×K, and therefore chooses the “correct”
result of an addition on K. They explain how to map the resulting point into
the 4Θ embedding of A (in P

4g−1; for genus 2, this is P
15). A major difference

with our treatment here is that Robert and Lubicz cannot treat A as a Jacobian
(since general abelian varieties of dimension g > 3 are not Jacobians); hence,
when specializing to genus 2, there is no connection with any curve C or Jaco-
bian JC (and in particular, the starting and finishing points do not involve the
Mumford representation). Kohel [25] explores similar ideas for elliptic curves,
leading to a very interesting interpretation of Edwards curve arithmetic.

8 Applications to signatures

Smart and Siksek [34] first showed that the action of Z on G/ 〈±1〉 could be used
to instantiate Diffie–Hellman on G/ 〈±1〉 rather than G. In [34, §5], they pondered
whether protocols like ElGamal encryption could be instantiated on G/ 〈±1〉, and
observed that the main obstruction appeared to be that such protocols require an
addition in the group—that is, a true group structure and not a mere Z-action.

Our Project-pseudomultiply-Recover technique allows a range of crypto-
graphic protocols beyond Diffie–Hellman key exchange to take advantage of the
fast and uniform (multi-)scalar multiplications offered on G/ 〈±1〉, where G can
now be any elliptic curve or any genus 2 Jacobian (defined over a large charac-
teristic field).

In this section we illustrate this by showing how Schnorr signatures [33] can
take advantage of the fast arithmetic available when G/ 〈±1〉 is the fast Kum-
mer surface Kfast

C . More specifically, we describe an instantiation of a Schnorr
signature scheme where G is the Jacobian of the Gaudry–Schost curve [21] used
recently to set Diffie–Hellman speed records [4] at the 128-bit security level. Fol-
lowing the design of EdDSA signatures [5], we hash both the message M and
signer’s public key Q alongside the first half of the signature. We emphasise,
however, that both of these choices are merely for illustrative purposes, and that
any known variant of ElGamal signatures (Schnorr or otherwise) can use G/ 〈±1〉
for any suitable choice of G.

8.1 The Gaudry-Schost Jacobian

Let q = 2127 − 1, choose an α in Fq such that 363α2 + 833 = 0, define the six
constants

a = 11 , b = −22 , c = −19 , c = −3 , e = 1 + α , f = 1− α ;

setting λ := (ac)/(bd), µ := (ce)/(df), and ν := (ae)/(bf), we let C be the
genus 2 curve over Fq defined by

C : y2 = x(x − 1)(x− λ)(x − µ)(x − ν) .

The Jacobian JC of C has cardinality #JC(Fq) = 24N , where

N = 2250 − 0x334D69820C75294D2C27FC9F9A154FF47730B4B840C05BD

is a 250-bit prime.
We define the 127-bit encoding of Fq to be the little-endian encoding of

{0, 1, . . . , 2127− 2}, and let H : {0, 1}∗ → {0, 1}512 be any suitable hash function
with a 512-bit output (eg. SHA-512 or SHA3-512).

To ensure that all our scalars are positive and of fixed bitlength, when com-
puting scalar multiplications [m]P on JC we systematically replace m with
m′ := (m mod N)+3N ; then m′ always has exactly 252 bits (since both 3N and
4N have 252 bits). Following the lead of [5], the cofactor 16 is included in the
key generation and verification operations to void any potential threat of small
subgroup attacks [26]. In this case, the scalar 16z is parsed by appending four
zeroes to the parsing of z described above, so a multiplication by the 252-bit
scalar z is followed by 4 doubling operations. Where applicable, the operation
counts stated below include the cost of these 4 additional DBL or xDBL operations.

To compare our Project-pseudomultiply-Recover approach to traditional
arithmetic in JC , we take the operation counts from [23, Table 2], where ADD

costs 41M+7S+22a, DBL costs 26M+8S+2mc+25a, mADD costs 32M+5S+22a
and mDBLADD costs 57M+8S+42a. Here mADD and mDBLADD compute P ⊕Q and
[2]P ⊕ Q where P is projective and Q (which is typically a fixed lookup table
element) is normalized. We assume a fixed, signed window approach to comput-
ing one-dimensional scalar multiplications in JC ; our experiments with 252-bit
scalars found the window width w = 5 to be optimal. In this case the scalar mul-
tiplications need 8 × DBL+ 7 × mADD operations to build the lookup table of 16
elements, 1I+39M to normalize its entires, 200×DBL+50×mDBLADD operations
in the main loop, and 1I+4M to normalize the output. For the two-dimensional
scalar multiplications, we assume the standard approach to such multiexponenti-
ations (cf. [18, §3]). Our experiments showed that w = 2 is optimal here, meaning
the lookup table contains 16 elements [u]P + [v]Q for 0 ≤ u, v ≤ 3. In this case
two-dimensional scalar multiplications need 3 × DBL + 10 × mADD operations to
build the lookup table, 1I+36M to normalize its entries, 125×DBL+125×mDBLADD
operations in the main loop, and 1I+ 4M to normalize the output.

We only present counts for the dominant operations, i.e., the (multi)scalar
multiplications, below. For the exact costs of compression and decompression, see

Appendix A; we omit details of point validation in JC and Kfast
C , both of which

are essentially for free. For simplicity, we compare key generation, signing, and
verification operations in §8.2 assuming that no precomputation is performed
offline, noting that, if space permits it, all of these operations can take advantage
of precomputation in practice.

8.2 Schnorr signatures on the Gaudry-Schost Jacobian

Let the public generator, P , be any point of order N in JC(Fq). Including P ,
generic elements 〈x2+a1x+a0, b1x+ b0〉 in JC(Fq) are compressed as in §A and
encoded as a 256-bit string (bit0||a0||bit1||a1).

Key generation: Given the public generator P and a 256-bit secret key d,
compute H(d) = (d′||d′′), where d′ and d′′ are both 256-bit strings. The public
key is computed as the 256-bit encoding of Q = [16d′]P . Computing (d′, P) 7→
Q directly on the Jacobian costs 8629M + 2131S + 424mc + 7554a + 2I, but
using Algorithm 1 to project, pseudomultiply on Kfast

C , and recover, costs only
2654M+ 2312S+ 1546mc + 8221a+ 2I – see Theorem 4.

Signing: Given the public generator P , a messageM , and the secret keyH(d) =
(d′||d′′), compute r = H(d′′||M), then the 256-bit encoding of R = [r]P , then
h = H(R||Q||M), and finally the 256-bit encoding of s = (r − 16hd′) mod N .
The signature is the 512-bit string (R||s). The costs of performing (r, P) 7→ [r]P
are almost the same as above, except for the cost of the four final doublings in
both scenarios: on JC this comes to 8525M+2099S+416mc+7454a+2I, while
using Algorithm 1 costs 2654M+ 2280S+ 1522mc + 8157a+ 2I.

Verification: Given the public generator P , a message M , and a putative sig-
nature (R||s) on M associated with a public key Q, compute h = H(R||Q||M)
and accept the signature if [16s]P + [16h]Q = [16]R; otherwise, reject. Comput-
ing ((s, h), (P,Q)) 7→ [16]([s]P + [h]Q) directly on the Jacobian with the costs
10813M+ 2074S+ 256mc + 8670a + 2I. Using Algorithm 3 to perform the 2-
dimensional scalar multiplication via Kfast

C costs 4478M + 3325S + 2308mc +
14272a+ 2I – see Theorem 4.

We summarize the costs of key generation, signing and verification in Table 6.
In addition to the speed benefits of Algorithm 1 and Algorithm 3 in this scenario,
we reiterate that their working on Kfast

C avoids the side-channel issues discussed
in §6.1.

References

1. Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Moti Yung,
Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, Public Key Cryptography

Table 6. Costs of key generation, signing and verification in the above Schnorr signa-
ture scheme.

Algorithm Method M S mc a I

Key Generation
fixed window mult. on JC 8629 2131 424 7554 2

Algorithm 1 2654 2312 1546 8221 2

Signing
fixed window mult. on JC 8525 2099 416 7454 2

Algorithm 1 2654 2280 1522 8157 2

Verification
multiscalar mult. on JC 10813 2074 256 8670 2

Algorithm 3 4478 3325 2308 14272 2

- PKC 2006, 9th International Conference on Theory and Practice of Public-Key

Cryptography, New York, NY, USA, April 24-26, 2006, Proceedings, volume 3958
of Lecture Notes in Computer Science, pages 207–228. Springer, 2006.

2. Daniel J. Bernstein. Differential addition chains. preprint, 2006.
3. Daniel J. Bernstein. Elliptic vs. hyperelliptic, part I. Talk at ECC 2006, Fields

Institute, Toronto, Canada, 2006. http://cr.yp.to/talks/2006.09.20/slides-djb-
20060920-a4.pdf.

4. Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Peter
Schwabe. Kummer strikes back: New DH speed records. In Sarkar and Iwata
[32], pages 317–337.

5. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang.
High-speed high-security signatures. J. Cryptographic Engineering, 2(2):77–89,
2012.

6. Daniel J. Bernstein and Tanja Lange. Explicit formulas database, 2015.
http://www.hyperelliptic.org/EFD/.

7. Brainpool. ECC Brainpool standard curves and curve generation v. 1.0, 2005.
http://www.ecc-brainpool.org/download/Domain-parameters.pdf.

8. Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks. In
David Naccache and Pascal Paillier, editors, Public Key Cryptography, 5th Inter-

national Workshop on Practice and Theory in Public Key Cryptosystems, PKC

2002, Paris, France, February 12-14, 2002, Proceedings, volume 2274 of Lecture
Notes in Computer Science, pages 335–345. Springer, 2002.

9. Daniel R. L. Brown. Multi-dimensional montgomery ladders for elliptic curves.
2006.http://eprint.iacr.org/2006/220.

10. David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Mathematics

of computation, 48(177):95–101, 1987.
11. J. W. S. Cassels and E. V. Flynn. Prolegomena to a middlebrow arithmetic of

curves of genus 2, volume 230. Cambridge University Press, 1996.
12. David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers gener-

ated by addition in formal groups and new primality and factorization tests. Adv.

in Appl. Math., 7:385–434, 1986.
13. Romain Cosset. Applications of theta functions for hyperelliptic curve cryptogra-

phy. Ph.D Thesis, Université Henri Poincaré - Nancy I, November 2011.
14. Craig Costello, Hüseyin Hisil, and Benjamin Smith. Faster compact Diffie–

Hellman: Endomorphisms on the x-line. In Phong Q. Nguyen and Elisabeth Os-
wald, editors, Advances in Cryptology - EUROCRYPT 2014 - 33rd Annual Inter-

national Conference on the Theory and Applications of Cryptographic Techniques,

Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume 8441 of Lecture

Notes in Computer Science, pages 183–200. Springer, 2014.
15. Sylvain Duquesne. Montgomery scalar multiplication for genus 2 curves. In Dun-

can A. Buell, editor, Algorithmic Number Theory, 6th International Symposium,

ANTS-VI, Burlington, VT, USA, June 13-18, 2004, Proceedings, volume 3076 of
Lecture Notes in Computer Science, pages 153–168. Springer, 2004.

16. Harold Edwards. A normal form for elliptic curves. Bulletin of the American

Mathematical Society, 44(3):393–422, 2007.
17. Taher ElGamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–472,
1985.

18. Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point mul-
tiplication on elliptic curves with efficient endomorphisms. In Joe Kilian, editor,
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology

Conference, Santa Barbara, California, USA, August 19-23, 2001, Proceedings,
volume 2139 of Lecture Notes in Computer Science, pages 190–200. Springer, 2001.

19. Pierrick Gaudry. Fast genus 2 arithmetic based on Theta functions. J. Mathemat-

ical Cryptology, 1(3):243–265, 2007.
20. Pierrick Gaudry and David Lubicz. The arithmetic of characteristic 2 Kummer sur-

faces and of elliptic Kummer lines. Finite Fields and Their Applications, 15(2):246–
260, 2009.

21. Pierrick Gaudry and Eric Schost. Genus 2 point counting over prime fields. J.

Symb. Comput., 47(4):368–400, 2012.
22. Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryptology ePrint Archive,

Report 2015/625, 2015. http://eprint.iacr.org/.
23. Huseyin Hisil and Craig Costello. Jacobian coordinates on genus 2 curves. In

Sarkar and Iwata [32], pages 338–357.
24. Tetsuya Izu and Tsuyoshi Takagi. Exceptional procedure attack on elliptic curve

cryptosystems. In Yvo Desmedt, editor, Public Key Cryptography - PKC 2003,

6th International Workshop on Theory and Practice in Public Key Cryptography,

Miami, FL, USA, January 6-8, 2003, Proceedings, volume 2567 of Lecture Notes

in Computer Science, pages 224–239. Springer, 2003.
25. David Kohel. Arithmetic of split kummer surfaces: Montgomery endomorphism of

edwards products. In Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao,
Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding and Cryp-

tology - Third International Workshop, IWCC 2011, Qingdao, China, May 30-June

3, 2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages
238–245. Springer, 2011.

26. Chae Hoon Lim and Pil Joong Lee. A key recovery attack on discrete log-based
schemes using a prime order subgroupp. In Burton S. Kaliski Jr., editor, Advances
in Cryptology - CRYPTO ’97, 17th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 17-21, 1997, Proceedings, volume 1294 of
Lecture Notes in Computer Science, pages 249–263. Springer, 1997.

27. Julio López and Ricardo Dahab. Fast multiplication on elliptic curves over
GF(2m) without precomputation. In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems, First International Workshop,

CHES’99, Worcester, MA, USA, August 12-13, 1999, Proceedings, volume 1717 of
Lecture Notes in Computer Science, pages 316–327. Springer, 1999.

28. David Lubicz and Damien Robert. Arithmetic on abelian and kummer varieties.
IACR Cryptology ePrint Archive, 2014:493, 2014.

29. Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of factor-
ization. Mathematics of computation, 48(177):243–264, 1987.

30. NIST. Recommended elliptic curves for federal government use, 1999.
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf.

31. Katsuyuki Okeya and Kouichi Sakurai. Efficient elliptic curve cryptosystems from a
scalar multiplication algorithm with recovery of the y-coordinate on a Montgomery-
form elliptic curve. In Çetin Kaya Koç, David Naccache, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2001, Third International

Workshop, Paris, France, May 14-16, 2001, Proceedings, volume 2162 of Lecture
Notes in Computer Science, pages 126–141. Springer, 2001.

32. Palash Sarkar and Tetsu Iwata, editors. Advances in Cryptology - ASIACRYPT

2014 - 20th International Conference on the Theory and Application of Cryptol-

ogy and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014.

Proceedings, Part I, volume 8873 of Lecture Notes in Computer Science. Springer,
2014.

33. Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptology,
4(3):161–174, 1991.

34. Nigel P. Smart and Samir Siksek. A fast Diffie–Hellman protocol in genus 2.
Journal of cryptology, 12(1):67–73, 1999.

35. Colin Stahlke. Point compression on Jacobians of hyperelliptic curves over Fq.
IACR Cryptology ePrint Archive, 2004:30, 2004.

36. Paul van Wamelen. Equations for the Jacobian of a hyperelliptic curve. Transac-
tions of the American Mathematical Society, 350(8):3083–3106, 1998.

A Point compression in genus 2

Here we show how to compress points on Kgen
C , Kfast

C and JC . We use E to denote
a fixed exponentiation in the underlying finite field, e.g., to compute a square
root. It is commonly the case that E ≈ I.

Compressing points on the general Kummer K
gen
C

. Generic points P =
(ξ1 : ξ2 : ξ3 : ξ4) in Kgen

C (Fq) ⊂ P
3(Fq) have ξ1 6= 0, so we can compute a normal-

ized representative (1 : k2 : k3 : k4), where each ki = ξi/ξ1, at a cost of 3M+1I.
We can further compress P to the data (k2, k3, bit), where bit is a single bit,
as follows: the defining equation of Kgen

C (Eq. (4)) is quadratic in ξ4, so

k4 =
−K1(1, k2, k3)±

√

K1(1, k2, k3)2 − 4K0(1, k2, k3)K2(1, k2, k3)

2K2(1, k2, k3)
, (16)

which means that k4 can be recovered (during decompression) from k2, k3, and
the “sign” of the square root. To compress, after computing (k2, k3, k4), we
compute K1 = K1(1, k2, k3) and K2 = K2(1, k2, k3) and set bit to be the sign
bit5 of 2K2k4 +K1. Computing the sign bit costs 7M+ 2S+ 11a.

To decompress (k2, k3, bit) to a point on Kgen
C , we first compute K0 =

K0(1, k2, k3), K1 = K1(1, k2, k3) and K2 = K2(1, k2, k3). We can then use a

5 When q is a large prime, the sign bit of an element is typically chosen as its parity
when represented as an integer in [0, q − 1).

simultaneous inversion-and-square-root6 to compute both
√

K2
1 − 4K0K2 and

1/(2K2) using one field exponentiation, before recovering k4 via (16). The de-
compressed point is then (1 : k2 : k3 : k4); the decompression costs 25M+ 4S+
24a+ 1E.

Compressing points on the fast Kummer K
fast
C

. As with the general Kum-
mer Kgen

C , generic points P = (X : Y : Z : T) in Kfast
C (Fq) ⊂ P

3(Fq) have a non-
zero first coordinate X , so we might begin compressing P by normalizing the
X-coordinate to 1. But the defining equation ofKfast

C (Eq. (15)) is quartic in all of
its variables, which suggests that compressing another coordinate would require
solving an (unwieldy) during decompression. A faster approach to achieving fur-
ther compression7 is to map (X : Y : Z : T) to the general Kummer, and then
to normalize before performing compression/decompression there. The cost of
compressing P = (X : Y : Z : T) into two Fq elements and a single bit is therefore
25M+ 2S+ 23a+ 1I, and the cost of decompression 40M+ 4S+ 36a+ 1E.

Compressing points on the Jacobian. To compress the four Mumford co-
ordinates, we follow Stahlke’s technique [35]. For general genus 2 curves, com-
pression of 〈x2 + a1x+ a0, b1x+ b0〉 into (a1, a0, bit1, bit0) costs 3M+1S+4a,
while decompression costs 36M + 5S + 45a + 2E. Compression costs the same
for genus 2 curves in Rosenhain form, but decompression is significantly faster
and requires 18M + 4S+ 27a + 2E. In the latter case, we compress by setting
bit1 and bit0 as the least significant bits of 4(a1b1b0−a0b

2
1− b20) and b1 respec-

tively. For decompression, we recover b1 and b0 from (a1, a0, bit1, bit0) by first
computing

A = a21 − 4a0, C = (a0(a0 − f3 − a1(a1 − f4)) + f1)
2, and

B = 2(f4a0(2a0 − a21) + a0(f3a1 − 2f2) + a1(f1 + a0(a
2
1 − 3a0))),

and using bit1 to choose z0 as the correct root z0 =
√
B2 − 4AC. We then

set z1 = (z0 − B)/(2A); here the square root and the inversion of 2A can
again be combined into one exponentiation. We can then recover b1 as b1 =√

f4(a21 − a0)− a1(f3 + a21 − 2a0) + f2 + z1, using bit0 to choose the root. Fi-
nally, we recover b0 as b0 = (a0(f4a1 − f3 − q2 + a0) + qz1 + f1)/(2b1), noting
again that the square root and the inversion can be computed simultaneously.

6 E.g., compute
√
u and 1/v via w ← uv2, w ← w−1/2, then (

√
u, 1/v)← (uvw, uw).

7 This faster compression/decompression answers a question posed by Bernstein [3].

