First-order regret bounds for combinatorial semi-bandits

Gergely Neu 1
1 SEQUEL - Sequential Learning
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : We consider the problem of online combinatorial optimization under semi-bandit feedback, where a learner has to repeatedly pick actions from a combinatorial decision set in order to minimize the total losses associated with its decisions. After making each decision, the learner observes the losses associated with its action, but not other losses. For this problem, there are several learning algorithms that guarantee that the learner's expected regret grows as O(√ T) with the number of rounds T. In this paper, we propose an algorithm that improves this scaling to O(√ L * T), where L * T is the total loss of the best action. Our algorithm is among the first to achieve such guarantees in a partial-feedback scheme, and the first one to do so in a combinatorial setting.
Type de document :
Communication dans un congrès
Proceedings of the 28th Annual Conference on Learning Theory (COLT), Jul 2015, Paris, France. 40, pp.1360-1375, 2015, JMLR Workshop and Conference Proceedings
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01215001
Contributeur : Gergely Neu <>
Soumis le : mardi 13 octobre 2015 - 14:40:50
Dernière modification le : mardi 3 juillet 2018 - 11:44:11
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:04:58

Fichier

firstorder_colt.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01215001, version 1

Collections

Citation

Gergely Neu. First-order regret bounds for combinatorial semi-bandits. Proceedings of the 28th Annual Conference on Learning Theory (COLT), Jul 2015, Paris, France. 40, pp.1360-1375, 2015, JMLR Workshop and Conference Proceedings. 〈hal-01215001〉

Partager

Métriques

Consultations de la notice

143

Téléchargements de fichiers

65