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The short toric polynomial

Gábor Hetyei1

1Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC, USA

Abstract. We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains
the same information as Stanley’s pair of toric polynomials, but allows different algebraic manipulations. Stanley’s
intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is inde-
pendent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in
terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path
enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of
a dual simplicial Eulerian poset in terms of its f -vector. This formula implies Gessel’s formula for the toric h-vector
of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence
of the Generalized Lower Bound Theorem holding for simplicial polytopes.

Résumé. Nous introduisons le polynôme torique court associé à un ensemble ordonné Eulérien. Ce polynôme contient
la même information que le couple de polynômes toriques de Stanley, mais il permet des manipulations algébriques
différentes. La récurrence entrecroisée de Stanley peut être remplacée par une seule récurrence dans laquelle le degré
des termes écartés est indépendant du rang. La variante torique courte de la formule de Bayer et Ehrenborg, qui
exprime le vecteur torique d’un ensemble ordonné Eulérien en termes de son cd-index, est énoncée sous une forme
qui ne dépend pas du rang et qui peut être démontrée en utilisant une énumération des chemins pondérés et le principe
de réflexion. Nous utilisons nos techniques pour dériver une formule exprimant le vecteur h-torique d’un ensemble
ordonné Eulérien dont le dual est simplicial, en termes de son f -vecteur. Cette formule implique la formule de Gessel
pour le vecteur h-torique d’un cube, et elle peut être utilisée pour démontrer que la positivité du vecteur h-torique
d’un polytope simple est une conséquence du Théorème de la Borne Inférieure Généralisé appliqué aux polytopes
simpliciaux.

Keywords: Eulerian poset, toric h-vector, Narayana numbers, reflection principle, Morgan-Voyce polynomial

Introduction

We often look for a “magic” simplification that makes known results easier to state, and provides the
language to state new results. For Eulerian posets such a wonderful simplification was the introduction of
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the cd-index by Fine (see [6]) allowing to restate the Bayer-Billera formulas [2] in a simpler form and to
formulate Stanley’s famous nonnegativity conjecture [18], shown many years later by Karu [14].

A similar “magic” moment has yet to arrive regarding the toric polynomials f(P, x) and g(P, x) asso-
ciated to an Eulerian poset P̂ = P ]{1̂} by Stanley [19]. The new invariant proposed here may not be the
desired “magic simplification” yet, but it represents an improvement in some cases. The idea on which
it is based is very simple and widely useful. There is a bijective way to associate each multiplicatively
symmetric polynomial p(x) (satisfying p(x) = xdeg(p(x))p(1/x)) to an additively symmetric polynomial
q(x) (satisfying q(−x) = (−1)deg(q(x))q(x)) of the same degree, having the same set of coefficients (see
Section 2). There is no change when we want to extract the coefficients of the individual polynomials
only, but when we consider a sequence {pn(x)}n≥0 of multiplicatively symmetric polynomials, given by
some rule, switching to the additively symmetric variant {qn(x)}n≥0 greatly changes the appearance of
the rules, making them sometimes easier to manipulate.

The short toric polynomial t(P, x), associated to a graded Eulerian poset P̂ is defined in Section 3 as the
multiplicatively symmetric variant of f(P, x). The intertwined recurrence defining f(P, x) and g(P, x) is
equivalent to a single recurrence for t(P, x). It is a tempting thought to use this recurrence to generalize
the short toric polynomial to all ranked posets having a unique minimum element, even if in the cases of
some lower Eulerian posets, “severe loss of information” may occur. We state the short toric variant of
Fine’s formula (see [1] and [3, Theorem 7.14]) expressing the toric h-vector in terms of the flag f -vector.
By inspecting this formula, it is easy to observe that the generalization of t(P, x) makes most sense when
the reduced Euler characteristic of the order complex of P \ {0̂} is not zero.

Arguably our nicest result is Theorem 4.6, expressing t(P, x) associated to a graded Eulerian poset P̂
by defining two linear operators C,D : Q[x] → Q[x] that need to be substituted into the reverse of the
cd-index and applied to the constant polynomial 1. The fact that the toric h-vector may be computed
by replacing the letters c and d in the reverse of the cd-index by some linear operators and applying
the resulting linear operator to a specific vector is a direct consequence of the famous result by Bayer and
Ehrenborg [3, Theorem 4.2], expressing the toric h-vector in terms of the cd-index. In applications, the use
of this result may be facilitated by finding a linearly equivalent presentation that is easier to manipulate.
Our Theorem 4.6 is analogous to Lee’s result [15, Theorem 5] and it is the first result offering a rank-
independent substitution rule. Theorem 4.2, the reason behind Theorem 4.6, also implies the short toric
variant of [3, Theorem 4.2], and has a proof using weighted lattice path enumeration and the reflection
principle. The use of weighted lattice paths is already present in the work Bayer and Ehrenborg [3,
Section 7.4]. By finding the cd-index via calculating the ce-index first, and by using the short toric form,
the applicability of the reflection principle becomes apparent.

Theorem 4.6 highlights the importance of the sequence of polynomials {Q̃n(x)}n≥0, a variant of the
sequence {Qn(x)}n≥0 in [3]. In Section 5 we take a closer look at this sequence, alongside the sequence
of short toric polynomials {tn(x)}n≥0 associated to Boolean algebras. The polynomials {Q̃n(x)}n≥0
turn out to be the dual basis to the Morgan-Voyce polynomials, whereas the polynomials {tn(x)}n≥0 may
be used to provide a simple formula connecting t(P, x) to g(P, x).
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An application showing the usefulness of our invariant may be found in Section 6, where we express
the toric h-vector of an Eulerian dual simplicial poset in terms of its f -vector. This question was raised by
Kalai, see [19]. Besides using Theorem 4.6, the proof of the formula depends on a formula conjectured
by Stanley [18, Conjecture 3.1] and shown in [10, Theorem 2], expressing the contribution of the h-
vector entries of an Eulerian simplicial poset to its cd-index as weights of certain André permutations.
An equivalent form of our formula implies that the nonnegativity of the toric h-vector of simple polytope
is an elementary consequence of the Generalized Lower Bound Theorem (GLBT) holding for simplicial
polytopes [20]. The word elementary has to be stressed since Karu [13] has shown that the GLBT holds
for all polytopes.

1 Preliminaries

A poset P is graded if it has a unique minimal element 0̂, a unique maximal element 1̂ and a rank function
ρ : P → N satisfying ρ(0̂) = 0 and ρ(y) = ρ(x) + 1 whenever y covers x. The rank of P is ρ(1̂).
The flag f -vector of a graded poset P of rank n + 1 is (fS : S ⊆ [1, n]) where fS = fS(P ) is the
number of maximal chains in the set PS := {u ∈ P : ρ(u) ∈ S}. A graded poset is Eulerian if every
interval [u, v] ⊆ P with u < v satisfies

∑
z∈[u,v](−1)ρ(z) = 0. All linear relations satisfied by the flag

f -vector of an Eulerian poset were given by Bayer and Billera [2]. It was observed by Fine and proved
by Bayer and Klapper [6] that the Bayer-Billera relations may be restated as the existence of the cd-index,
as follows. Introducing the flag h-vector (hS : S ⊆ [1, n]) of a graded poset of rank (n + 1) by setting
hS :=

∑
T⊆S(−1)|S|−|T |fT , we define the ab-index as the polynomial ΨP (a, b) =

∑
S⊆[1,n] hSuS in

noncommuting variables a and b where the letter ui in uS = u1 · · ·un is a if i 6∈ S and b if i ∈ S. The
ab-index of an Eulerian poset is then a polynomial of c = a + b and d = ab + ba. This polynomial
ΦP (c, d) is the cd-index of P . The existence of the cd index is equivalent to stating that the ce-index,
obtained by rewriting the ab-index as a polynomial of c = a+ b and e = a− b, is a polynomial of c and
e2, see [18]. Let us denote by LS the coefficient of the ce word v1 · · · vn, where S is the set of indices i
such that vi = e. It was shown in [4] that the resulting flag L-vector (LS : S ⊆ [1, n]) of a graded poset
of rank (n+ 1) is connected to the flag f -vector by the formulas

LS = (−1)n−|S|
∑

T⊇[1,n]\S

(
−1

2

)|T |
fT and fS = 2|S|

∑
T⊆[1,n]\S

LT . (1)

The Bayer-Billera relations are thus also equivalent to stating that, for an Eulerian poset, LS = 0 unless
S is an even set, i.e., a disjoint union of intervals of even cardinality, see [5].

The toric h-vector associated to a graded Eulerian poset [0̂, 1̂] was defined by Stanley [19] by introduc-
ing the polynomials f([0̂, 1̂), x) and g([0̂, 1̂), x) by the intertwined recurrences

f([0̂, 1̂), x) =
∑
t∈[0̂,1̂)

g([0, p), x)(x− 1)ρ(1̂)−1−ρ(t) and (2)

g([0̂, 1̂), x) =

b(ρ(1̂)−1)/2c∑
i=0

([xi]f([0̂, 1̂), x)− [xi−1]f([0̂, 1̂), x))xi (3)
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and by the initial condition f(∅, x) = g(∅, x) = 1. Here the operator [xi] extracts the coefficient of xi. The
toric h-vector associated to [0̂, 1̂) is then the vector of coefficients of the polynomial xρ(1̂)−1f([0̂, 1̂), 1/x).
The first formula expressing f(P, x) in terms of the flag f -vector was found by Fine (see [1] and [3,
Theorem 7.14]). Here we state it in an equivalent form that appears in the paper of Bayer and Ehrenborg [3,
Section 7]:

f([0̂, 1̂), x) =
∑

S⊆[1,n]

fS
∑

λ∈{−1,1}n:S(λ)⊇S

(−1)|S|+n−iλxiλ , (4)

where S(λ) = {s ∈ {1, . . . , n} : λ1 + · · · + λs > 0} and iλ is the number of −1’s in λ. Bayer and
Ehrenborg [3, Theorem 4.2] also expressed the toric h-vector of an Eulerian poset in terms of its cd-index.

2 Additive and multiplicative symmetry of polynomials

Definition 2.1 Let K be a field. We say that a polynomial p(x) ∈ K[x] of degree n is multiplicatively
symmetric if xnp(x−1) = p(x) and it is additively symmetric if p(x) = (−1)np(−x).

Theorem 2.2 A polynomial p(x) ∈ K[x] of degree n is multiplicatively symmetric if and only if there is
an additively symmetric polynomial q(x) ∈ K[x] of degree n satisfying

p(x) = x
n
2

(
q(
√
x) + q

(
1√
x

)
− q(0)

)
. (5)

Moreover, q(x) is uniquely determined.

Definition 2.3 Given a multiplicatively symmetric polynomial p(x) we call the additively symmetric vari-
ant of p(x) the additively symmetric polynomial q(x) associated to p(x) via (5). Conversely, given an ad-
ditively symmetric polynomial q(x) we call the multiplicatively symmetric variant of q(x) the polynomial
p(x) defined by (5).

To express the additively symmetric variant of a multiplicatively symmetric polynomial, we may use the
following truncation operators.

Definition 2.4 Let K be a fixed field and K[x, x−1] the ring of Laurent polynomials. For any z ∈ Z,
the truncation operator U≥z : K[x, x−1] → K[x, x−1] is the linear operator defined by discarding all
terms of degree less than z. Similarly U≤z : K[x, x−1]→ K[x, x−1] is defined by discarding all terms of
degree more than z.

The notation U≥z and U≤z is consistent with the notation used in [3], where (3) is rewritten as

g([0̂, 1̂), x) = U≤bn/2c((1− x)f([0̂, 1̂), x). (6)
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Lemma 2.5 Let p(x) be a multiplicatively symmetric polynomial of degree n. Then the additively sym-
metric variant q(x) of p(x) satisfies

q(x) = U≥0(x−np(x2)) = U≥0(xnp(x−2)).

3 The short toric polynomial of an arbitrary graded poset

Stanley’s generalization [19, Theorem 2.4] of the Dehn-Sommerville equations may be restated as follows.

Theorem 3.1 (Stanley) For an Eulerian poset [0̂, 1̂] of rank n + 1, the polynomial f([0̂, 1̂), x) is multi-
plicatively symmetric of degree n.

Definition 3.2 The short toric polynomial t([0̂, 1̂), x) associated to an Eulerian poset [0̂, 1̂] is the addi-
tively symmetric variant of the toric polynomial f([0̂, 1̂), x).

Note that the interval [0̂, 1̂) is half open and f(∅, x) = 1 implies t(∅, x) = 1.

Lemma 3.3 If [0̂, 1̂] is an Eulerian poset of rank n+ 1 then we have

U≥1

(
t([0̂, 1̂), x) ·

(
x− 1

x

))
= xn+1g

(
[0̂, 1̂), x−2

)
.

Using Lemmas 2.5 and 3.3 we may show the following fundamental recurrence.

Theorem 3.4 The short toric polynomial satisfies the recurrence

t([0̂, 1̂), x) = U≥0

(x−1 − x)ρ(1̂)−1+
∑

0̂<p<1̂

U≥1

(
t([0̂, p), x)(x− x−1)

)
(x−1 − x)ρ(1̂)−ρ(p)−1

 .

We may use this fundamental recurrence to extend the definition of t([0̂, 1̂), x) to all finite posets P
having a unique minimal element 0̂ and a rank function. This generalization is not equivalent to Stanley’s
generalization of f(P, x) to lower Eulerian posets in [19, §4]. Recall that a finite poset is lower Eulerian
if it has a unique minimal element 0̂ and, for each p ∈ P , the interval [0̂, p] is an Eulerian poset.

Proposition 3.5 Let P be a lower Eulerian poset and let n be the length of the longest chain in P . Then
t(P, x) = U≥0(xnf(P, x−2)).
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Remark 3.6 For a lower Eulerian poset P , the polynomial t(P, x) may not contain sufficient information
to recover f(P, x). If P = [0̂, 1̂] is a graded Eulerian poset of rank n + 1 then, using [19, (19)] and
Proposition 3.5, we can show t([0̂, 1̂], x) = 0, yet f([0̂, 1̂], x) is usually not zero.

Proposition 3.7 (Fine’s formula)

t(P, x) =
∑

S⊆[1,n]

fS(P ) ·
∑

λ∈{−1,1}n : S(λ)⊇S,n−2iλ≥0

(−1)n−iλ+|S|xn−2iλ (7)

holds for all finite posets P having a unique minimal element 0̂ and a rank function ρ : P → N, satisfying
ρ(0̂) = 0 and n = max{ρ(p) : p ∈ P}. Here, for any S ⊆ [1, n], fS = fS(P ) is the number of maximal
chains in PS = {u ∈ P : ρ(u) ∈ S} .

The statement may be shown in a very similar fashion to Fine’s original formula. The role of equations
(2) and (3) is taken over by the single recurrence given in Theorem 3.4.

Corollary 3.8 The degree of t(P, x) equals max{ρ(p) : p ∈ P} if and only if
∑

S⊆[1,n]
(−1)|S|fS(P ) 6= 0.

Note that
∑

S⊆[1,n]
(−1)|S|fS(P ) is the reduced Euler characteristic of the order complex of P \ {0̂}.

4 The short toric polynomial and the cd-index of an Eulerian poset

Using (1) and the binomial theorem we may rewrite (7) as

t([0̂, 1̂), x) =
∑

T⊆[1,n]

LS
∑

λ∈{−1,1}n : n−2iλ≥0

xn−2iλ(−1)n−iλ+|S(λ)\S|. (8)

Just like in [3, Section 7.4], we represent each λ ∈ {−1, 1}n by a lattice path starting at (0, 0) and
containing (1, λi) as step i for i = 1, . . . , n. The condition n− 2iλ ≥ 0 restricts us to lattice paths whose
right endpoint is on or above the horizontal axis. We introduce R(λ) := {i ∈ [1, n] : λ1 + · · ·+ λi = 0}
and say that a set S evenly contains the set R if R ⊆ S and S \R is the disjoint union of intervals of even
cardinality. We may use the “reflection principle” to match canceling terms, and obtain the following.

Theorem 4.1 Let [0̂, 1̂] be a graded Eulerian poset of rank n+ 1. Then we have

t([0̂, 1̂), x) =
∑

S⊆[1,n]

LS · tce(S, x).

Here tce(S, x) is the total weight of all λ ∈ {−1, 1}n such that S evenly contains R(λ)∪ (R(λ)− 1) and
λ1 + · · · + λi ≥ 0 holds for all i ∈ {1, . . . , n}. The weight of each such λ is defined as follows: each
λi = −1 contributes a factor of −1/x, each λi = 1 contributes a factor of x and each element of R(λ)
contributes an additional factor of 2.
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Theorem 4.1 gains an even simpler form when we rephrase it in terms of the cd-index.

Theorem 4.2 Let [0̂, 1̂] be a graded Eulerian poset of rank n+ 1. Then we have

t([0̂, 1̂), x) =
∑
w

[w]Φ[0̂,1̂](c, d) · t(w, x).

Here the summation runs over all cd-words w of degree n. The polynomial t(w, x) is the total weight
of all λ ∈ {−1, 1}n such that the set of positions covered by letters d equals R(λ) ∪ (R(λ) − 1) and
λ1 + · · · + λi ≥ 0 holds for all i ∈ {1, . . . , n}. The weight of each such λ is defined as follows: each
λi = −1 contributes a factor of −1/x, each λi = 1 contributes a factor of x, and each element of R(λ)
contributes an additional factor of −1.

Theorem 4.2 allows us to explicitly compute the contribution t(w, x). Thus we obtain the short toric
equivalent of [3, Theorem 4.2], expressing f([0̂, 1̂), x) in terms of the cd-index.

Proposition 4.3 The polynomial t(ck1dck2 · · · ckrdck, x) is zero if at least one of k1, k2, . . . , kr is odd. If
k1, k2, . . . , kr are all even then

t(ck1dck2 · · · ckrdck, x) = (−1)
k1+···+kr

2 C k1
2
· · ·C kr

2
Q̃k(x).

Here Ck = 1
k+1

(
2k
k

)
is a Catalan number, and the polynomials Q̃n(x) are given by Q̃0(x) = 1 and

Q̃n(x) :=

bn−1
2 c∑

k=0

(−1)k
((

n− 1

k

)
−
(
n− 1

k − 1

))
xn−2k for n ≥ 1.

Remark 4.4 The polynomials Q̃n(x) are closely related to the polynomials Qn(x) introduced by Bayer
and Ehrenborg [3]. They may be given by Q̃n(x) = xnQn(x−2).

Theorem 4.2 also allows us to introduce two linear maps C : Q[x]→ Q[x] andD : Q[x]→ Q[x] in such a
way that, for any graded Eulerian poset [0̂, 1̂], the polynomial t([0̂, 1̂), x) may be computed by substituting
C into c and D into d in the reverse of ΦP (c, d) and applying the resulting linear operator to 1. Note that
the definitions and the result below are independent of the rank of P .

Definition 4.5 We define C : Q[x] → Q[x] by setting C(1) = x, C(x) = x2 and C(xn) = xn+1 − xn−1
for n ≥ 2. We define D : Q[x]→ Q[x] by setting D(1) = 1, D(x2) = −1 and D(xn) = 0 for n 6∈ {0, 2}.

Theorem 4.6 For any Eulerian poset P = [0̂, 1̂] we have

t([0̂, 1̂), x) = Φrev
P (C,D)(1)

Here Φrev
P (C,D) is obtained from ΦP (c, d) by first taking the reverse of each cd-monomial and then

replacing each c with C and each d with D.
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Proof: By Theorem 4.2, we only need to show that

t(ck1dck2 · · · ckrdck, x) = Ck DCkr DCkr−1 D · · ·D Ck1(1) (9)

holds for any cd-word w = ck1dck2 · · · ckrdck. This may be shown by induction on the degree of w, the
basis being t(ε, t) = 1 where ε is the empty word. 2

5 Two useful bases

Proposition 4.3 highlights the importance of the basis {Q̃n(x)}n≥0 of the vector space Q[x]. In this
section we express the elements of the basis {xn}n≥0, as well as the operators C and D, in this new basis.
We also find the analogous results for the basis {tn(x)}n≥0 where tn(x) = t(Bn+1, x) for the Boolean
algebra B̂n+1 of rank n + 1. This basis is useful in proving the main result of Section 6, as well as in
finding a very simple formula connecting t(P, x) with g(P, x).

Proposition 5.1 For n > 0 we have

xn =

bn−1
2 c∑

k=0

(
n− 1− k

k

)
Q̃n−2k(x).

We may rewrite Proposition 5.1 as x2n =
∑n
k=1

(
n−1+k
n−k

)
Q̃2k(x) for even powers of x and as x2n+1 =∑n

k=0

(
n+k
n−k
)
Q̃2k+1(x) for odd powers of x. The coefficients appearing in these equations are exactly

the coefficients of the Morgan-Voyce polynomials Bn(x) and bn(x) respectively, see [16, 23, 24]. An-
other connection between the toric g-polynomials of cubes and the Morgan-Voyce polynomials was noted
in [11].

Corollary 5.2 The linear transformation Q[x]→ Q[x] given by xn 7→ Q̃n(x) takesBn(x2) into x2n and
xbn(x2) into x2n+1.

Comparing Proposition 4.3 with (9) yields the following consequence.

Corollary 5.3 The operators C and D are equivalently given by

C(Q̃n(x)) := Q̃n+1(x) and D(Q̃n(x)) =

{
0 for odd n,
(−1)n/2Cn/2 for even n.

We now turn to the polynomials tn(x) := t(Bn+1, x). Stanley’s result [19, Proposition 2.1] may be
rewritten as

tn(x) =

bn2 c∑
k=0

xn−2k for n ≥ 0. (10)
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Inverting the summation given in (10) yields

xn =

{
tn(x)− tn−2(x) if n ≥ 2,
tn(x) if n ∈ {0, 1}. (11)

As an immediate consequence of Definition 4.5 and (11) we obtain

C(tn(x)) = tn+1(x)− tn−1(x) and D(tn(x)) = δn,0 for n ≥ 0. (12)

Here we set t−1(x) := 0 and δn,0 is the Kronecker delta function. Finally, the most remarkable property
of the basis {tn(x)}n≥0 is its role in the following result connecting the polynomials g(P, x) and t(P, x).

Proposition 5.4 Let [0̂, 1̂] be any Eulerian poset of rank n + 1. Then t([0̂, 1̂), x) =
∑bn2 c
k=0 cktn−2k(x)

holds for some integers c0, c1, . . . , cbn/2c if and only if the same integers satisfy g([0̂, 1̂), x) =
∑bn2 c
k=0 ckx

k.

6 The toric h-vector associated to an Eulerian dual simplicial poset

Given any graded poset P of rank n+1, let fi denote number of elements of rank i+1 in P . The resulting
vector (f−1, f0, . . . , fn) is the f -vector of P . A graded poset P is simplicial if for all t ∈ P \ {1̂}, the
interval [0̂, t] is a Boolean algebra. A graded poset P is dual simplicial if its dual P ∗ is a simplicial
poset. It was first observed by Kalai that the toric h-polynomials coefficients of a dual simplicial graded
Eulerian poset P depend only on the entries fi in the f -vector P . This linear combination is not unique,
and a simple explicit formula was not known before. We will express the toric h-polynomial coefficients
of P in terms of its h-vector (h0, . . . , hn), given by

hk =

n∑
i=k

(−1)i−k
(
i

k

)
fi,

Since fi(P ) = fn−1−i(P
∗), by [19, Corollary 2.2] this h-vector coincides with the toric h-vector of the

simplicial poset P ∗. Our main result is the following:

Theorem 6.1 The short toric polynomial t([0̂, 1̂), x) associated to a graded dual simplicial Eulerian
poset P = [0̂, 1̂] of rank n+ 1 may be written as

t([0̂, 1̂), x) = h0(tn(x)− (n− 1)tn−2(x))

+

n−1∑
i=1

hi

bn2 c∑
k=1

((
n− i
k

)(
i− 1

k − 1

)
−
(
n− i− 1

k

)(
i

k − 1

))
tn−2k(x)

The proof uses Stanley’s description [18, Theorem 3.1] of the cd-index of an Eulerian simplicial poset in
terms of its h-vector as a combination ΦP (c, d) =

∑n−1
i=0 hi · Φ̌ni and the combinatorial description of the
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polynomials Φ̌ni stated in [10, Theorem 2], originally conjectured by Stanley [18, Conjecture 3.1]. These
results are combined with (9) to obtain recurrence formulas that allow proving the result by induction.
See [12] for details. An important equivalent form of Theorem 6.1 is the following statement.

Proposition 6.2 Let [0̂, 1̂] be a graded dual simplicial Eulerian poset of rank n+ 1. Then we have

t([0̂, 1̂), x) = h0tn(x) +

bn2 c∑
i=1

(hi − hi−1)

min{i,n−i}∑
k=1

n+ 1− 2i

k

(
n− i
k − 1

)(
i− 1

k − 1

)
tn−2k(x).

Corollary 6.3 Let [0̂, 1̂] be a graded dual simplicial Eulerian poset of rank n+ 1. Then

g([0̂, 1̂), x) = h0(1− (n− 1)x)

+

n−1∑
i=1

hi

bn2 c∑
k=1

((
n− i
k

)(
i− 1

k − 1

)
−
(
n− i− 1

k

)(
i

k − 1

))
xk.

Corollary 6.4 Let [0̂, 1̂] be a graded dual simplicial Eulerian poset of rank n+ 1. Then

g([0̂, 1̂), x) = 1 +

bn2 c∑
i=1

(hi − hi−1)

min{i,n−i}∑
k=1

n+ 1− 2i

k

(
n− i
k − 1

)(
i− 1

k − 1

)
xk.

The most important consequence of Corollary 6.4 is the following.

Corollary 6.5 Let [0̂, 1̂] be a graded dual simplicial Eulerian poset of rank n + 1. If the h-vector
(h0, . . . , hn) satisfies h0 ≤ h1 ≤ · · · ≤ hbn/2c, then f([0̂, 1̂], x) has nonnegative coefficients.

Indeed, by Corollary 6.4 above, g([0̂, 1̂), x) has nonnegative coefficients and the statement follows from
[19, (19)].

Example 6.6 Let [0̂, 1̂] be the face lattice of an n-dimensional simple polytope P . By Corollary 6.5, the
fact that the toric h-vector of P has nonnegative entries is a consequence of the Generalized Lower Bound
Theorem [20] for simplicial polytopes.

Remark 6.7 In the case when n = 2i, the coefficientsN(i, k) =
(
i−1
k−1
)(

i
k−1
)
/k, contributed by hbn/2c−

hbn/2c−1 in Corollary 6.4 are the Narayana numbers, see sequence A001263 in [17]. The same numbers
appear also as the coefficients of the contributions of hbn/2c and hdn/2e for any n in Corollary 6.3.

Motivated by Example 6.9 below, we rewrite Corollary 6.3 in the basis {(x− 1)k}k≥0.
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Proposition 6.8 Let [0̂, 1̂] be a graded dual simplicial Eulerian poset of rank n+ 1. Then we have

g([0̂, 1̂), x) = h0(n− (n− 1)(x− 1))

+

n−1∑
i=1

hi

bn2 c∑
k=0

((
n− i
k

)(
n− k − 1

i− k

)
−
(
n− i− 1

k

)(
n− k − 1

i+ 1− k

))
(x− 1)k.

Example 6.9 Let [0̂, 1̂] be the face lattice [0̂, 1̂] of an n-dimensional cube. Starting with Proposition 6.8,
after repeated use of Pascal’s identity and the Chu-Vandermonde identity, one can show

g([0̂, 1̂), x) =

bn/2c∑
k=0

(
n− k
k

)
Cn−k(x− 1)k. (13)

It was noted in [11, Lemma 3.3] that (13) is equivalent to Gessel’s result [19, Proposition 2.6], stating

g([0̂, 1̂), x) =

bn/2c∑
k=0

1

n− k + 1

(
n

k

)(
2n− 2k

n

)
(x− 1)k. (14)

The first combinatorial interpretation of the right hand side of (14) is due to Shapiro [21, Ex. 3.71g] the
proof of which was published by Chan [9, Proposition 2].
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492 Gábor Hetyei

[6] M. Bayer and Klapper, A new index for polytopes, Discrete Comput. Geom. 6 (1991), 33–47.

[7] L. J. Billera and Francesco Brenti, Quasisymmetric functions and Kazhdan-Lusztig polynomials,
preprint 2007, to appear in Israel Journal of Mathematics, arXiv:0710.3965v2 [math.CO].

[8] L. J. Billera, and G. Hetyei, Decompositions of partially ordered sets, Order 17 (2000), 141–166.

[9] Clara S. Chan, Plane trees and H-vectors of shellable cubical complexes, SIAM J. Discrete Math. 4
(1991), 568–574.

[10] G. Hetyei, On the cd-variation polynomials of André and Simsun permutations, Discrete Comput.
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