The equivariant topology of stable Kneser graphs

Résumé : Schrijver a défini le graphe de Kneser stable $SG_{n,k}$, avec $n \geq 1$ et $k \geq 0$. Le graphe $SG_{n,k}$ est un graphe critique (par rapport aux sommets) de nombre chromatique $k+2$, dont les sommets correspondent à certains sous-ensembles d'un ensemble de cardinalité $m=2n+k$. Björner et de Longueville ont démontré que son complexe de boîtes et la sphère sont homotopiquement équivalents, c'est-à-dire $\mathrm{Hom}(K_2,SG_{n,k}) \simeq \mathbb{S}^k$. Le groupe diédral $D_{2m}$ agit sur $SG_{n,k}$ canoniquement. Nous étudions l'action de $D_{2m}$ sur $\mathrm{Hom}(K_2,SG_{n,k})$ et nous définissons une action orthogonale correspondante sur $\mathbb{R}^{k+1} \supset \mathbb{S}^k$. Par ailleurs, nous fournissons une relation équivariante étroite entre les graphes $SG_{n,k}$ et les graphes de Borsuk de la sphère de dimension $k$. Utilisant cette relation et certains calculs dans l'anneau de cohomologie de $D_{2m}$ sur $\mathbb{Z}_2$, nous décrivons quels graphes de Kneser stables sont des graphes de tests selon la notion de Babson et Kozlov. Les graphes $SG_{2s,4}$ sont des graphes de tests, c'est-à-dire que pour tout $H$ et $r \geq 0$ tels que $\mathrm{Hom}(SG_{2s,4},H)$ est $(r-1)$-connexe, le nombre chromatique $\chi (H)$ est au moins $r+6$. D'autre part, si $k \notin \{0,1,2,4,8\}$ et $n \geq N(k)$, alors $SG_{n,k}$ n'est pas un graphe de tests d'homologie: il existe un graphe $G$ et un entier $r \geq 1$ tels que $\mathrm{Hom}(SG_{n,k}, G)$ est $(r-1)$-connexe et $\chi (G) < r+k+2$. Ce dernier résultat dépend d'un nouveau critère nécessaire pour être un graphe de tests, qui implique le groupe d'automorphismes du graphe.
Type de document :
Communication dans un congrès
Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel. 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp.873-884, 2011, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01215058
Contributeur : Coordination Episciences Iam <>
Soumis le : mardi 13 octobre 2015 - 15:05:50
Dernière modification le : mardi 7 mars 2017 - 15:15:19
Document(s) archivé(s) le : jeudi 27 avril 2017 - 00:18:34

Fichier

dmAO0176.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01215058, version 1

Collections

Citation

Carsten Schultz. The equivariant topology of stable Kneser graphs. Bousquet-Mélou, Mireille and Wachs, Michelle and Hultman, Axel. 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AO, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), pp.873-884, 2011, DMTCS Proceedings. 〈hal-01215058〉

Partager

Métriques

Consultations de la notice

81

Téléchargements de fichiers

110