D. Aldous and P. Diaconis, Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem, Bulletin of the American Mathematical Society, vol.36, issue.04, pp.413-432, 1999.
DOI : 10.1090/S0273-0979-99-00796-X

A. Borodin, P. Diaconis, and J. Fulman, On adding a list of numbers (and other one-dependent determinantal processes), Bulletin of the American Mathematical Society, vol.47, issue.4, pp.639-670, 2010.
DOI : 10.1090/S0273-0979-2010-01306-9

W. Hoeffding and H. Robbins, The central limit theorem for dependent random variables, Duke Mathematical Journal, vol.15, issue.3, pp.773-780, 1948.
DOI : 10.1215/S0012-7094-48-01568-3

R. Pemantle and M. C. Wilson, Asymptotics of Multivariate Sequences, Journal of Combinatorial Theory, Series A, vol.97, issue.1, pp.129-161, 2002.
DOI : 10.1006/jcta.2001.3201

R. P. Stanley, Longest alternating subsequences of permutations. Michigan Math, J, vol.57, pp.675-687, 2008.

R. P. Stanley, Increasing and decreasing subsequences and their variants, Proc. Internat. Cong. Math. Madrid, pp.545-579, 2006.
DOI : 10.4171/022-1/21

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. P. Stanley, A survey of alternating permutations, Contemp. Math, 2010.
DOI : 10.1090/conm/531/10466

H. Widom, On the limiting distribution for the longest alternating subsequence in a random permutation, Electron. J. Combin, vol.13, p.25, 2006.

H. S. Wilf, Real zeroes of polynomials that count runs and descending runs. Unpublished preprint, 1998.