Skip to Main content Skip to Navigation
Conference papers

Hyperplane Arrangements and Diagonal Harmonics

Abstract : In 2003, Haglund's bounce statistic gave the first combinatorial interpretation of the q,t-Catalan numbers and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We prove that our statistics are equivalent to the area' and bounce statistics of Haglund and Loehr. In this setting, we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two directions: to "extended'' Shi arrangements and to the bounded chambers of these arrangements. This leads to a (conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to elementary symmetric functions.
Complete list of metadata

Cited literature [28 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam Connect in order to contact the contributor
Submitted on : Tuesday, October 13, 2015 - 3:06:33 PM
Last modification on : Tuesday, March 7, 2017 - 3:14:13 PM
Long-term archiving on: : Thursday, April 27, 2017 - 12:01:04 AM


Publisher files allowed on an open archive




Drew Armstrong. Hyperplane Arrangements and Diagonal Harmonics. 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011), 2011, Reykjavik, Iceland. pp.39-50, ⟨10.46298/dmtcs.2889⟩. ⟨hal-01215088⟩



Record views


Files downloads