]. P. Bun74 and . Buneman, A note on metric properties of trees On the relation between weighted trees and tropical grassmannians, Coo09] Filip Cools, pp.48-50, 1974.

]. A. Dre84 and . Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, Adv. Math, vol.53, pp.321-402, 1984.

H. Hirai, Characterization of the Distance between Subtrees of a Tree by the Associated Tight Span, Annals of Combinatorics, vol.10, issue.1, pp.111-128, 2006.
DOI : 10.1007/s00026-006-0277-7

S. Herrmann and M. Joswig, Splitting polytopes, Münster J. of Math, vol.1, pp.109-142, 2008.

B. Iriarte, Dissimilarity vectors of trees are contained in the tropical grassmannian, The Electronic Journal of Combinatorics, vol.17, p.1, 2010.

M. Joswig and K. Kulas, Tropical and ordinary convexity combined, Advances in Geometry, vol.10, issue.2, pp.333-352, 2010.
DOI : 10.1515/advgeom.2010.012

[. Pachter and D. Speyer, Reconstructing trees from subtree weights, Applied Mathematics Letters, vol.17, issue.6, 2003.
DOI : 10.1016/S0893-9659(04)90095-X

L. Pachter and B. Sturmfels, Algebraic statistics for computational biology, 2005.
DOI : 10.1017/CBO9780511610684

D. Speyer, Tropical Linear Spaces, SIAM Journal on Discrete Mathematics, vol.22, issue.4, pp.1527-1558, 2008.
DOI : 10.1137/080716219

D. Speyer and B. Sturmfels, The tropical Grassmannian, Advances in Geometry, vol.4, issue.3, pp.389-411, 2004.
DOI : 10.1515/advg.2004.023