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Statistics on staircase tableaux, eulerian and
mahonian statistics

Sylvie Corteel and Sandrine Dasse-Hartaut†

LIAFA, CNRS et Université Paris-Diderot, Paris, France

Abstract. We give a simple bijection between some staircase tableaux and tables of inversion. Some nice properties
of the bijection allows us to define someq-Eulerian polynomials related to the staircase tableaux. We also give a
combinatorial interpretation of theseq-Eulerian polynomials in terms of permutations.

Résuḿe.Nous proposons une bijection simple entre certains tableaux escalier et les tables d’inversion. Cette bijection
nous permet de montrer que les statistiques Euleriennes et Mahoniennes sont naturelles sur les tableaux escalier. Nous
définissons des polynômesq-Eulériens et en donnons une interprétation combinatoire.
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1 Introduction
Staircase tableaux are new combinatorial objects defined byS. Corteel and L. Williams (10). They are
related to the asymmetric exclusion process on a one-dimensional lattice with open boundaries (ASEP)
and were also used to give a combinatorial formula for the moments of the Askey-Wilson polynomials
defined in (1; 11). Those results are presented in (10; 7). Thestaircase tableaux are generalizations of the
permutation tableaux (6; 16) coming from work and alternative tableaux (13; 17).

Definition 1 (10) A staircase tableau of sizen is a Young diagram of shape(n, n − 1, ..., 1) such that
boxes are empty or filled withα,β,γ,δ and that

• the boxes along the diagonal are not empty

• a box in the same row and on the left of aβ or a δ is empty

• a box in the same column and above aα or a γ is empty

Definition 2 (10) Theweightwt(T ) of a staircase tableauT is a monomial inα, β, γ, δ, q, andu, which
we obtain as follows. Every blank box ofT is assigned aq or u, based on the label of the closest labeled
box to its right in the same row and the label of the closest labeled box below it in the same column, such
that:

†Both authors are partially supported by the ANR grant ANR-08-JCJC-0011 and the second author was supported by the ANR
grant BLAN07-2-195422 from March to September 2010.
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Fig. 1: A staircase tableau of size 7 and its weight

• every blank box which sees aβ to its right gets assigned au;

• every blank box which sees aδ to its right gets assigned aq;

• every blank box which sees anα or γ to its right, and anα or δ below it, gets assigned au;

• every blank box which sees anα or γ to its right, and aβ or γ below it, gets assigned aq.

After assigning aq or u to each blank box in this way, theweightof T is then defined as the product of
all labels in all boxes.

The tableau on Figure 1 has weightα3β2γ3δ3q9u8.
Remark. The weight of a staircase tableau always has degreen(n + 1)/2. For convenience, we will
sometimes setu = 1, since this results in no loss of information.

Definition 3 The generating polynomial of staircase tableaux of sizen is

Zn(α, β, γ, δ, q, u) =
∑

T of sizen

wt(T ).

Whenq = u = 1, this generating polynomial is simple (10) :

Zn(α, β, γ, δ, 1, 1) =

n−1
∏

i=0

(α+ β + γ + δ + i(α+ γ)(β + δ)). (1)

In (7), the authors give an explicit formula forZn(α, β, γ, δ, q, 1). It is very complicated and is derived
from a formula of the moments of the Askey-Wilson polynomials. In this paper, we show that there are
other special cases ofZn that have a very nice form. In particular, we show that

Theorem 1

Zn(0, β, γ, 0, q, u) =

n−1
∏

i=0

(βui + βγ(ui−1q + . . .+ uqi−1) + γqi).

Notice that as the definition of the tableaux implies thatZn(α, β, γ, δ, 1, 1) = Zn(0, β+δ, α+γ, 0, 1, 1),
our result is a refinement of (1).

We will prove the results in two ways: a bijection and an inductive argument. We will see that both of
these arguments are quite simple. This gives the simplest argument that there exist4nn! staircase tableaux
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of sizen (10; 7). We will study(β/γ)-tableaux that are staircase tableaux which do not contain anyα or
δ. We show that our very simple bijection can be generalized toany family of staircase tableaux.

We continue the study of the(β/γ)-tableaux. When those tableaux have exactlyn entries equal to
γ, there exist exactlyn! such tableaux. In (7), it is shown that they are in bijection with permutation
tableaux (16) or alternative tableaux (13; 17). We will showthat the bijection allows us in this case to
understand the statistic ”number ofβs on the diagonal” which is known to be related to the eulerian
numbers (16; 18). Thanks to this we will introduce some newq-Eulerian polynomials and will give some
combinatorial interpretation in terms of permutations.

We start in this paper by studyingZn(α, β, γ, δ, 1, 1) and some simple consequences and symmetries
on staircase tableaux. We then study the(β/γ)-staircase tableaux and define theq-Eulerian polynomials.
We show how the same type of arguments can be extended for typeB staircase tableaux. We end this
extended abstract with some concluding remarks and open problems.

2 Warm up on staircase tableaux
We first recall some simple recurrence to computeZn(α, β, γ, δ, 1, 1) given in (7). Thanks to the definition
of staircase tableaux, it is direct to see that

Zn(α, β, γ, δ, 1, 1) = Zn(α+ γ, β + δ, 0, 0, 1, 1)

We then just need to count tableaux withαs andβs as done for permutation tableaux in (6). As in (10),
we say that a line is indexed byα if the leftmost entry of the line isα. Let Zn,k(α, β) be the number
of tableaux counted byZn(α, β, 0, 0, 1, 1) with k rows indexed byα. Then if we add a new column to a
staircase tableau, we see that :

Zn,k(α, β) =
∑

ℓ≥k−1

αβℓ−k+1

(

ℓ

k − 1

)

Zn−1,ℓ(α, β) +
∑

ℓ≥k

βℓ−k+1

(

ℓ

k

)

Zn−1,ℓ(α, β).

for n > 0 andi ≤ n. The initial conditions areZ0,0 = 1 andZn,k = 0 if k < 0 or n < 0 or k > n. This
implies thatZn(α, β, x) =

∑

k Zn,k(α, β)x
k follows the recurrence forn > 0

Zn(α, β, x) = (αx+ β)Zn−1(α, β, x + β)

and with the initial conditionZ0(α, β, x) = 1. The solution isZn(α, β, x) =
∏n−1

i=0 (αx+ β + iαβ) and
thereforeZn(α, β, 0, 0, 1, 1) =

∏n−1
i=0 (α + β + iαβ).

This implies the following known results (7) :

1. The number of staircase tableaux of sizen with αs andβs is(n+ 1)!.

2. The number of staircase tableaux of sizen is 4nn!

3. The number of staircase tableaux of sizen with αs andβs andγs is(2n+ 1)!!.

We get some other simple results.

Lemma 1 1. The number of staircase tableaux of sizen with a maximum number ofα, β, γ or δ is
4n(n− 1)!.



248 Sylvie Corteel and Sandrine Dasse-Hartaut

2. The number of staircase tableaux of sizen with a minimum number ofα, β, γ or δ is 4n.

From the definition of the weight of the tableaux, we also get:

Lemma 2 1. The number of tableaux of sizen with αs andβs and a minimum (resp. maximum)
number ofus is3× 4

n−1

2 (resp.n).

2. The number of tableaux of sizen a minimum number ofus is
(

n
2

)

.

We can also define three involutions on tableaux. The proof that they are involutions follows directly
from the definition of the tableaux.

Involution 1. Let φ be the involution on the staircase tableaux that takes a tableauT , exchangesαs and
βs, and exchangesγs andδs, and conjugates the tableau. We can check that the tableau obtained is a
staircase tableau, and that the number ofα in T is the number ofβ in φ(T ) and so on. This implies that:

Zn(α, β, γ, δ, 1, 1) = Zn(β, α, δ, γ, 1, 1).

An example is given on Figure 2.

γ
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Fig. 2: Example of the involution 1

Involution 2. We can also use the involutionψ that exchangesαs with δs, andβs withγs and conjugates
the obtained tableau. This gives :

Zn(α, β, γ, δ, 1, 1) = Zn(δ, γ, β, α, 1, 1).

Involution 3. Finally if we exchangeαs andγs andβs andδs, we get

Zn(α, β, γ, δ, q, u) = Zn(γ, δ, α, β, α, u, q).

Open problemFind a combinatorial proof of the fact that :

Zn(α, β, γ, δ, q, u) = Zn(β, α, δ, γ, q, u).

By a combinatorial proof, we mean a natural involution on thetableaux.
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3 A bijection from tableaux to inversion table
3.1 Tableaux with n entries equal to γ and βs
We first recall that(β/γ)-tableaux are staircase tableaux with noα or δ. We start by enumerating the
(β/γ)-tableaux of sizen that contain exactlyn entries equal toγ. Let Z̃n(β, γ, q) be their generating
polynomial. We will show that :

Proposition 1 Z̃n(β, γ, q) = γn
∏n−1

i=0 (β(1 + q + . . .+ qi−1) + qi).

We define a bijection from those tableaux of sizen to permutations ofSn via tables of inversionT =
[T [1], . . . , T [n]] with T [i] < i for 1 ≤ i ≤ n.

A bijection from tableaux to permutations. There is oneγ in each column, so we can number them:
the leftmostγ will be designed byγ1, the following byγ2 and so on, untilγn. Then, for eachγi, we count
the numberti of cells that do not contain a Greek letter to the immediate left of γi. We can construct a
table of inversionT with T [i] = ti.

1 2 3 4 5 6 7

γ
β

β

γ
β

γ
γ

β

γ
γγ

Fig. 3: A (β/γ)-staircase tableau

For example from the tableau on Figure 3, we obtain the tableT = (0, 1, 2, 1, 2, 2, 1). Then we can
use any bijection from inversion table to permutations and obtain a permutation. For example ifT [i]
corresponds to the number of elementsj < i such thatσ−1(i) < σ−1(j), we obtain the permutation
(3,2,5,6,4,7,1).

Inverse of the bijection. We have an inversion tableT of sizen, we construct a staircase tableau of
sizen using the following algorithm :

• Putγ in the last column and first row, and markT [n] cells to its left (withq).

• For i = n− 1 to 1

– Look at the topmost cell in theith column which is not occupied and put aγ in it.

– Mark theT [i] cells to its left (withq)

– Fill all the empty cells under it withβ

– Mark all the cells to the left of theβs (withu)

We have exactly oneγ in each column. Eachβ has no Greek letter to its left and eachγ has no Greek
letter above itself. We have a staircase tableau, and it is obvious that the table of inversion obtained from
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this staircase tableau is exactlyT . Therefore we defined a bijection. Moreover all the cells directly to the
left of aγ get a weightq. Therefore

Proposition 2 The number of(β/γ)-staircase tableaux of sizen withn entries equal toγ, a entries equal
to q, b rows indexed byγ is equal to the number of permutations of{1, . . . , n} with a inversions andb
left-to-right minima.

Using well known results on enumeration of permutations (see for example (15) Chapter 1), we get a
proof of Proposition 1.

3.2 Generalization of the bijection
Now we can generalize the previous bijection to staircase tableaux. Start with a staircase tableau of size
n and number the columns from1 to n from left to right. Then for each columni, we look at the topmost
Greek letter in columni and count the number of cellsj directly to its left that does not contain any Greek
letter. If this letter, say x, is topmost and leftmost, we recordT [i] = jx. Otherwise lety be the first Greek
letter to the left ofx and letz be the first Greek letter undery. ThenT [i] = jx,z.

For example, using the tableau of Figure 1, we obtainT = (0γ , 1β, 2α, 1α,β, 2α,δ, 2γ,δ, 1γ,δ).

For the general case, this is a bijection from staircase tableaux of sizen and colored tables of inversion
T such thatT [i] = (i − 1)x with x ∈ {α, β, γ, δ} or T [i] = jx,y with 0 ≤ j < i − 1 andx ∈ {α, γ} and
y ∈ {β, δ}.

This implies equation (1), that is:

Zn(α, β, γ, δ, 1, 1) =
n−1
∏

i=0

(α+ β + γ + δ + i(α+ γ)(β + δ)).

For the(β/γ)-tableaux, this is a bijection from(β/γ)-staircase tableaux of sizen and colored tables of
inversionT such thatT [i] = (i− 1)x with x ∈ {β, γ} or T [i] = jγ,β with 0 ≤ j < i− 1. The number of
q of the tableau is equal to the sum of theT [i] (except the ones that are equal toiβ). This implies that

Zn(0, β, γ, 0, q, 1) =

n−1
∏

i=0

(β + βγ(q + . . .+ qi−1) + γqi).

This is Theorem 1.
Remark. As in the previous section, we could have proven this by recurrence. LetZn,k(β, γ, q) be the
number of tableaux counted byZn(0, β, γ, 0, q, 1) with k rows indexed byγ. We look at how many ways
we can add a column to a tableau of sizen− 1. We get:

Zn,k(β, γ, q) =
∑

ℓ≥k−1

γβℓ−k+1qk−1

(

ℓ

k − 1

)

Zn−1,ℓ(β, γ, q) +
∑

ℓ≥k

βℓ−k+1qk
(

ℓ

k

)

Zn−1,ℓ(β, γ, q).

for n > 0 andk ≤ n. The initial condition areZ0,0 = 1 andZn,k = 0 if k < 0 or n < 0 or k > n. Let
Zn(β, γ, q, x) =

∑

k Zn,k(β, γ, q)x
k. The recurrence implies thatZ0(β, γ, q, x) = 1 and forn > 0

Zn(β, γ, q, x) = (γx+ β)Zn−1(β, γ, q, xq + β)
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The solution is

Zn(β, γ, q, x) =

n−1
∏

i=0

(β + βγ(q + . . .+ qi−1) + γxqi).

ThereforeZn(0, β, γ, 0, q, 1) =
∏n−1

i=0 (β + βγ(q + . . .+ qi−1) + γqi).

4 q-Eulerian polynomials

4.1 Entries equal to β on the diagonal

Again we number the columns of the tableau from left to right.In this section we use some properties of
the bijection defined in Section 3.1. We need the following simple lemma.

Lemma 3 Given a(β/γ)-tableau of sizen with n entries equal toγ, there is aβ on the diagonal in
columni if and only if there is at least oneγ in columnj > i that hasj − i − 1 entries equal toq to its
immediate left.

Proof: Direct from the definition of the tableau and the fact that those tableaux have exactly oneγ in each
column. 2

We use the bijection of Section 3.1. We now transform the table of inversionT = [T [1], . . . , T [n]]
obtained from the(β/γ)-tableau into the table[0 − T [1], 1− T [2], . . . , n − 1 − T [n]]. We still obtain a
table of inversion. Moreover the distinct positive values of the table of inversion now correspond to the
diagonal entries filled withβ. We skip the proof of this claim. Therefore

Proposition 3 There exists a bijection between

• (β/γ)-tableaux of sizen with n entries equal toγ, entries equal toβ in diagonals{i1, . . . , ik} and
a entries equal toq

• table of inversionT = [T [1], . . . , T [n]] such that

– for 1 ≤ j ≤ k, there exists at least oneℓ such thatT [ℓ] = ij

–
∑n

i=1 T [i] =
(

n
2

)

− a.

For fixedn andk, let Zn,k(β, γ, q) be the generating polynomial of(β/γ)-tableaux of sizen with n
entries equal toγ andk entries equal toβ on the diagonal.

Lemma 4 The numberZn,k(1, 1, 1) is equal to the Eulerian numbersEn,k+1.

Proof: This is direct as these staircase tableaux of sizen are in bijection with permutation tableaux of
lengthn. This bijection is such that the entries equal toβ on the diagonal are in one-to-one correspon-
dence with the columns of the permutation tableau. See (10) for the bijection from staircase tableaux to
permutation tableaux. See (6; 16) for the bijection from permutation tableaux to permutations. 2

We now interpretZn,k(β, γ, q) in terms of permutations.



252 Sylvie Corteel and Sandrine Dasse-Hartaut

4.2 Permutations with k descents
We have seen that staircase tableaux withk entries equal toβ on the diagonal are in bijection with tables of
inversion withk different positive values. We construct here a bijection between these tables of inversion
and permutations withk descents.

4.2.1 From permutations with k descents to the tables of inversion with (k + 1)
distinct values (including 0)

Let σ be a permutation withk descents. We construct a table of inversionT from σ. Fori from 1 ton, let
j be the first element to the right ofi satisfyingj < i. If such aj does not exist, setT [i] = 0 andT [i] = j
otherwise.

It is easy to check that for alli, T [i] < i. Moreover all the values of the table are either 0 or the values
of the end of the descents ofσ. Finally, for all descent inσ of indexi, σi+1 is in at least one index inT .
Then the table hask + 1 distinct values.

For example, letσ = (5, 8, 2, 1, 6, 7, 3, 4, 9). We obtainT = [0, 1, 0, 0, 2, 3, 3, 2, 0]. The permutationσ
has three descents that end in1, 2 and3, and the table has four distinct values0, 1, 2 and3.

4.2.2 From tables of inversion to permutations
We start a tableT of inversions withk + 1 distincts values. We createσ by inserting successively the
lettersi = 1, 2, . . . , n. If T [i] > 0 then we inserti directly beforeT [i] and addi at the end otherwise.

For example, if we have the tableT = [0, 0, 1, 0, 4, 1, 0], we get the permutationσ = (3, 6, 1, 2, 5, 4, 7)
which has two descents. This is clearly the reverse map of theprevious subsection.

We now can interpretZn,k(β, γ, q) in terms of permutations. Given a permutationσ of Sn, we suppose
thatσ(n+ 1) = 0. LetM(σ, i) bej if j is the first element to the right ofi such thatj < i. Let

M(i) = min{j | j < i and σ−1(j) > σ−1(i)}

M(σ) =
∑

i

M(σ, i).

Let RLmin(σ) be the number of right-to-left minima ofσ. For example, ifσ = (3, 6, 1, 2, 5, 4, 7) then
M(σ, 3) =M(σ, 6) = 1,M(σ) = 6 andRLmin(σ) = 4. LetSn,k be the set of permutations inSn with
k descents. Thanks to the previous bijection, we get that

Proposition 4
Zn,k(β, γ, q) = γnβnq(

n

2
)

∑

σ∈Sn,k

q−M(σ)β−RLmin(σ).

But also we get a refinement. LetI = {i1, . . . ik}, let Zn,I(β, γ, q) be the generating polynomial of
the (β/γ)-tableaux of sizen with n entries equal toγ and where entries equal toβ on the diagonals
are indexed byI. Let Sn(I) be the set of permutations ofSn such thatσ(j − 1) > σ(j) if and only if
σ(j) ∈ I. Then

Proposition 5
Zn,I(β, γ, q) = q(

n

2)βnγn
∑

σ∈Sn(I)

q−M(σ)β−RLmin(σ).

Remark. The caseβ = q = 1 was already known for permutation tableaux (6; 18).
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5 Type B tableaux
In this section, we study some typeB staircase tableaux. They are the analogue of the typeB permutation
and alternative tableaux (12; 4; 5).

Definition 4 A typeB staircase tableau of sizen is a staircase tableau of size2n that is invariant under
the involution 2 from Section 2.

As the tableau is symmetric, we only keep half of it. A typeB staircase tableau of sizen is therefore of
shape(1, 2, . . . , n, n, n− 1, . . . 1). We number the rows from top to bottom and the columns from left to
right. We denote bysign-diagonalthe cells(i, i), for 1 ≤ i ≤ n. As in Section 1, we define the generating

polynomialZ(B)
n (α, β, γ, δ, q, u). We only look at the caseu = q = 1.

We first investigate tableaux with onlyβs andγs. We can construct a bijection from those tableaux the
signed permutations, using the idea of the bijection between staircase tableaux and permutations:

• When columni does not contain aγ, we add aγ in cell (i, i).

• We number theγs from left to right.

• We create two tables, the table of inversionT and the table of signθ

• For eachi, T [i] is the number of cells with no Greek letter immediately to theleft of γi (in the
columni). The sign ofi is ⊖ if γi is in the sign-diagonal and⊕ otherwise.

For example, starting from the tableau on Figure 4, we obtainthe signed permutation given by the tables
T = [0, 0, 2, 1, 2] andθ = [⊖,⊕,⊕,⊖,⊖].

β
β

γ
β
β

β γ

β

β
β

γ
β
β

β γ

β

γ

γ
γ

Fig. 4: A typeB staircase tableau and the tableau whenγs are inserted on the sign-diagonal

Therefore

Proposition 6 The previous algorithm defines a bijection between typeB staircase tableaux of sizen
with γs andβs and signed permutations of{1, . . . , n}. This bijection implies that

Z(B)
n (0, β, γ, 0, 1, 1) = (γ + β)n

n−1
∏

i=0

(1 + βi).
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Proof: We obviously have a function that transforms a tableau into asigned permutation. To see that it
is a bijection, we just have to notice that there is two choices forγn, and that knowingθ(n) allows us to
know in which of these two cells is theγ of columnn. Then for eachi, if we know where are all theγj
for j > i, we have two choices :γi may be on the left of aγj or on the diagonal or on the sign diagonal.
The latter case corresponds toθ[i] = ⊖. The others are identical to the construction between staircase
tableaux and permutations. There is no other choice since for eachγ on the columni that is not on the
sign-diagonal the rowi has to be empty (recall that the whole tableau is invariant under the involution 2
from Section 2). 2

Again, it is easy to see that:

Z(B)
n (α, β, γ, δ) = Z(B)

n (0, β + δ, γ + α, 0). (2)

And we obtain the following corollary

Corollary 1 There exist4n(2n− 1)!! staircase tableaux of typeB and sizen.

6 Conclusion
In this paper, we give a very simple bijection between(β/γ)-staircase tableaux and permutations. This
bijection is such that the number ofq in the tableaux is related to the number of inversions of the permu-
tation. Thanks to this construction, we get some possibly new q-Eulerian polynomials. This work opens
a set of natural open questions.

1. Is there a natural partially ordered set on(β/γ)-staircase tableaux that is isomorphic to the (weak)
Bruhat order?

2. Can we compute theseq-Eulerian polynomials as done in (18) for the permutation tableaux?

3. Can we compute the generating polynomial of(β/γ)-staircase tableaux when the diagonal is fixed
as done in (18; 14) for the permutation tableaux?

Our goal in this study of the staircase tableaux is to understand theq-statistics in the general staircase
tableaux. We know that this is related to crossings or 31-2 patterns in permutations for the case with only
αs andβs (3; 6; 16), to inversions in permutation for the case with only βs andγs and to f-crossings in
matchings (7) for the case with onlyαs, βs andγs. Similar results hold also for the type B analogue
(12; 5; 4). The general case is still open for now.
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