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A Littlewood-Richardson type rule for
row-strict quasisymmetric Schur functions

Jeffrey Ferreira1:

1University of California, Davis, Department of Mathematics, Davis, CA, USA

Abstract. We establish several properties of an algorithm defined by Mason and Remmel (2010) which inserts a
positive integer into a row-strict composition tableau. These properties lead to a Littlewood-Richardson type rule
for expanding the product of a row-strict quasisymmetric Schur function and a symmetric Schur function in terms of
row-strict quasisymmetric Schur functions.

Résumé. Nous établissons plusieurs propriétés d’un algorithme défini par Mason et Remmel (2010), qui insère un
entier positif dans un tableau dont la forme est une composition, avec ordre strict sur les lignes (row-strict). Ces pro-
priétés conduisent à une règle de type Littlewood-Richardson pour étendre le produit d’une fonction de Schur quasi-
symétrique “row-strict” et d’une fonction de Schur symétrique en termes de fonctions de Schur quasi-symétriques
“row-strict”.
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1 Introduction
Quasisymmetric functions were defined by Gessel in [5] where he developed many of their properties,
although quasisymmetric functions had already appeared in earlier work of Stanley [14]. Since their
introduction, quasisymmetric functions have become of increasing importance. They have appeared in
such areas of mathematics as representation theory [9], symmetric function theory [3], and combinatorial
Hopf algebras [1].

In [7], the authors define a new basis CSα for the algebra QSym of quasisymmetric functions, where α
is a sequence of positive integers called a strong composition. In a fixed number of variables, the functions
CSα are defined to be a certain positive integral sum of Demazure atoms. Demazure atoms first appeared
in [10] and later were characterized as specializations of nonsymmetric Macdonald polynomials when
q � t � 0 [12]. A subset of the functions CSα, in a finite number of variables, were shown in [11] to give
a basis of the coinvariant space of quasisymmetric polynomials, thus proving a conjecture of Bergeron
and Reutenauer in [2].

In [8] the authors give a Littlewood-Richardson type rule for expanding the product CSαsλ, where sλ is
the symmetric Schur function, as a nonnegative integral sum of the functions CSβ . This rule relied on their
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combinatorial definition for CSα as the generating function of column-strict composition tableaux, which
are certain fillings of strong composition shape α with positive integers. These column-strict composition
tableaux are defined by imposing three relations among certain sets of entries in the fillings of α. The proof
of the Littlewood-Richardson type rule in [8] utilized an analogue of Schensted insertion on tableaux,
which is an algorithm in classical symmetric function theory which inserts a positive integer b into a
tableau T .

In [13], the authors provide a row-strict analogue of column-strict composition tableaux; specifically
they interchange the roles of weak and strict in each of the three relations mentioned above. One of
these relations requires the fillings to decrease strictly in each row, thus the name row-strict composition
tableaux. Also contained in [13] is an insertion algorithm which inserts a positive integer b into a row-strict
composition tableau, producing a new row-strict composition tableau.

This article establishes several new properties of the insertion algorithm given in [13]. If we define
RSα to be the generating function of row-strict composition tableaux of shape α, then the properties of
this algorithm lead directly to a Littlewood-Richardson type rule for expanding the product RSαsλ as a
nonnegative integral sum of the function RSβ . The combinatorics of this rule contain many similarities
to the classical Littlewood-Richardson rule for multiplying two Schur functions, see [4] for example.

1.1 Compositions and reverse lattice words
A strong composition α � pα1, . . . , αkq with k parts is a sequence of positive integers. A weak compo-
sition γ � pγ1, . . . , γkq with k parts is a sequence of nonnegative integers. A partition λ � pλ1, . . . , λkq
with k parts is a weakly decreasing sequence of positive integers. Let λ� :� pλk, λk�1, . . . , λ1q be the
reverse of λ, and let λt denote the transpose of λ. Denote by rα the unique partition obtained by placing
the parts of α in weakly decreasing order. Denote by γ� the unique strong composition obtained by re-
moving the zero parts of γ. For any sequence β � pβ1, . . . , βkq with k parts let `pβq :� k be the length
of β. For γ and β arbitrary (possibly weak) compositions of the same length k we say γ is contained
in β, denoted γ � β, if γi ¤ βi for all 1 ¤ i ¤ k. For α and β strong compositions, we say β is a
refinement of α, denote β ¨ α, if α can be obtained by summing consecutive parts of β. That is, β ¨ α
if α1 � β1 � � � � � βi, α2 � βi�1 � � � � � βj , α3 � βj�1 � � � � � βm, and so on.

A finite sequence w � w1w2 � � �wn of positive integers with largest part size m is called a reverse
lattice word if in every prefix ofw there are at least as many i’s as pi�1q’s for each 1   i ¤ m. The content
of a wordw is the sequence contpwq � pcontpwq1, . . . , contpwqmqwith the property that contpwqi equals
the number of times i appears in w. A reverse lattice word is called regular if contpwq1 � 0. Note that if
w is a regular reverse lattice word, then contpwq � λ� for some partition λ.

1.2 Diagrams and fillings
To any sequence β of nonnegative integers we may associate a diagram, also denoted β, of left justified
boxes with βi boxes in the ith row from the top. In the case β � λ is a partition, the diagram of λ is the
usual Ferrers diagram in English notation. Given a diagram β, let pi, jq denote the box in the ith row and
jth column.

Given two sequences γ and β of the same length k such that γ � β, define the skew diagram β{γ to be
the array of boxes that are in β and not in γ. The boxes in γ are called the skewed boxes. For each skew
diagram contained in this article, an extra column with k boxes will be added strictly to the left of each
existing column so that the ith row of β{γ has pβi � 1q � pγi � 1q boxes. This new column will be called
the 0th column.
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A filling U of a diagram β is an assignment of positive integers to the boxes of β. Given a filling U
of β, let Upi, jq be the entry in the box pi, jq. A reverse row-strict tableau, or just tableau, T is a filling
of partition shape λ such that each row strictly decreases when read left to right and each column weakly
decreases when read top to bottom. If λ is a partition with λ1 � m, then let Tλ be the tableau of shape λ
which has the entire ith column filled with the entry pm� 1� iq for all 1 ¤ i ¤ m.

A filling of a skew diagram β{γ is an assignment of positive integers to the boxes that are in β and not
in γ. We follow the convention that each box in the 0th column and each skewed box is assigned a virtual
8 symbol. Once filled, two such boxes in the same row are defined to strictly decrease, while two such
boxes in the same column are defined to be equal.

The column reading order of a (possibly skew) diagram is the total order  col on its boxes where
pi, jq  col pi

1, j1q if j   j1 or (j � j1 and i ¡ i1). This is the total order obtained by reading the
boxes from bottom to top in each column, starting with the left-most column and working rightwards.
The column reading word of a (possibly skew) filling U is the sequence of integers wcolpUq obtained by
reading the entries of U in column reading order, where we ignore entries from skewed boxes and entries
in the 0th column. The content of any filling U of partition or composition shape, denoted contpUq,
is the content of its column reading word wcolpUq. To any filling U we may associate a monomial
xU �

±
i¥1 x

contpUqi
i .

The following definition first appeared in [13].

Definition 1 Let α be a strong composition with k parts with largest part sizem. A row-strict composition
tableau (RCT) U is a filling of the diagram α such that

1. The first column is weakly increasing when read top to bottom.

2. Each row strictly decreases when read left to right.

3. Triple Rule: Supplement U with zeros added to the end of each row so that the resulting filling Û is
of rectangular shape k �m. Then for 1 ¤ i1   i2 ¤ k and 2 ¤ j ¤ m,�

Ûpi2, jq � 0 and Ûpi2, jq ¡ Ûpi1, jq
	
ñ Ûpi2, jq ¥ Ûpi1, j � 1q.

If we let Ûpi2, jq � b, Ûpi1, jq � a, and Ûpi1, j � 1q � c, then the Triple Rule (b � 0 and b ¡ a
implies b ¥ c) can be pictured as

c a
...
b

.

A row-strict composition tableau is called standard if each of the entries t1, 2, . . . , nu appears exactly
once. Given a standard row-strict composition tableau U , define its descent set DpUq to be the set of all
entries b such that the entry b� 1 appears in a column strictly to the right of the column containing b.

Inversion triples were originally introduced by Haglund, Haiman, and Loehr in [6] to describe a com-
binatorial formula for symmetric Macdonald polynomials. In this article inversion triples are defined as
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follows. Let γ be a (possibly weak) composition and let β be a strong composition with γ � β. Let U be
some arbitrary filling of β{γ. A Type A triple is a triple of entries

Upi1, j � 1q � c, Upi1, jq � a, Upi2, jq � b

in U with βi1 ¥ βi2 for some rows i1   i2 and some column j ¡ 0. A Type B triple is a triple of entries

Upi1, jq � b, Upi2, jq � c, Upi2, j � 1q � a

in U with βi1   βi2 for some rows i1   i2 and some column j ¥ 0. A triple of either type is said to be
an inversion triple if either b ¤ a   c or a   c ¤ b. Note that triples of either type may involve boxes in
the 0th column. Type A and Type B triples can be visualized as

Type A Type B

c a
...
b

b
...
c a

.

Central to Theorem 13 in Section 3 is the following definition.

Definition 2 Let β and α be strong compositions. Let γ be some (possibly weak) composition satisfying
γ� � α. A Littlewood-Richardson skew row-strict composition tableau S, or LR skew RCT, of shape β{α
is a filling of a diagram of skew shape β{γ such that

1. Each row strictly decreases when read left to right.

2. Every Type A and Type B triple is an inversion triple.

3. The column reading word of S, wcolpSq, is a regular reverse lattice word.

Note that in Definition 2, the filling is defined to be of a diagram of skew shape β{γ where γ� � α for
some fixed α. Thus, we define the shape of a LR skew RCT to be β{α.

Example 3 Below is a RCT, U , which has shape p1, 3, 2, 2q, and a LR skew RCT, S, which has shape
p1, 2, 3, 1, 5, 3q{p1, 3, 2, 2q with wcolpSq � 4433421.

U=

1

4 3 2

5 4

5 3

S=

8 8

8 4 3
8 8 8 8

8 4
8 8 8 4 2 1
8 8 8 3

1.3 Generating functions
The algebra of symmetric functions Λ has many bases, of which the Schur functions sλ are arguably
the most important. The Schur function sλ can be defined in a number of ways. In this article it is
advantageous to define sλ as the generating function of reverse row-strict tableaux of shape λt. That is
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sλ �
¸

xT

where the sum is over all reverse row-strict tableaux T of shape λt.
The algebra QSym of quasisymmetric functions also has several interesting bases, two of which we

recall here. The monomial quasisymmetric function basis Mα is given by

Mα �
¸

i1 i2 ���ik

xα1
i1
xα2
i2
� � �xαk

ik

where α is a strong composition. In [5], Gessel defines the fundamental quasisymmetric function basis,
which can be expressed as

Fα �
¸
β¨α

Mβ

where α and β are strong compositions such that β is a refinement of α.
The generating function of row-strict composition tableaux of shape α are denoted RSα. That is,

RSα �
¸

xU

where the sum is over all row-strict composition tableaux U of shape α. The generating functions RSα
are called row-strict quasisymmetric Schur functions and were originally defined in [13].

In [13] the authors show RSα are indeed quasisymmetric, and furthermore the collection of all RSα,
as α ranges over all strong compositions, forms a basis of the algebra QSym of quasisymmetric func-
tions. This result is obtained by expressing the functions RSα in terms of the fundamental basis Fβ of
quasisymmetric functions.

Proposition 4 [13] Let α and β be strong compositions of n. Then

RSα �
¸
β

dαβFβ

where dαβ is equal to the number of standard row-strict composition tableaux U of shape α such that
comppDpUqq :� pb1, b2 � b1, . . . , bk � bk�1, n� bkq � β. Here, DpUq � tb1, b2, . . . , bku is the descent
set of U .

In [13] the authors show the transition matrix given by the coefficients dαβ is upper uni-triangular.
Hence the collection of all RSα form a basis of QSym.

The relation between row-strict quasisymmetric Schur functions and symmetric Schur functions is
given in [13] by

sλ �
¸

α : rα�λt

RSα.

The well-known involution ω on symmetric functions acts on the Schur basis by the formula ωpsλq �
sλt . An extension of ω to quasisymmetric functions appears in [5], and can be defined on the fundamental
quasisymmetric functions by the formula ωpFαq � Fα� . Using Proposition 4 the authors in [13] describe
the action of ω on row-strict quasisymmetric Schur functions.
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Theorem 5 [13] Let α be a strong composition of n. Let CSα be the column-strict quasisymmetric Schur
function indexed by α (see [7]). Then

ωpRSαpx1, x2, . . . , xnqq � CSαpxn, xn�1, . . . , x1q.

In a separate but related work, we show that a certain subset of RSα are a basis for the coinvariant
space of quasisymmetric functions. This proof is analogous to the proof appearing in [11]. Unlike the
functions CSα, there is to date no representation theoretic interpretation of the functions RSα. It would
be interesting to know whether such an interpretation exists.

2 Insertion algorithms
Let A be a matrix with finitely many nonzero entries, each entry in N. Associate to A a two-line array
wA by letting

wA �

�
i1 i2 � � � im
j1 j2 � � � jm



where ir, jr are positive integers for 1 ¤ r ¤ m, and (a) i1 ¥ i2 ¥ � � � ¥ im, (b) if ir � is and r ¤ s
then jr ¤ js, and (c) there are exactly aij numbers r such that pir, jrq � pi, jq for each pair pi, jq. Denote
by pwA the sequence i1, i2, . . . , im and denote by qwA the sequence j1, j2, . . . , jm.

The classical Robinson-Schensted-Knuth (RSK) correspondence gives a bijection between two-line
arrays wA and pairs of (reverse row-strict) tableaux pP,Qq of the same shape [4]. The basic operation
of RSK is Schensted insertion on tableaux, which is an algorithm that inserts a positive integer b into a
tableau T to produce a new tableau T 1. In our setting, Schensted insertion can be stated as

Definition 6 Given a tableau T and b a positive integer one can obtain T 1 :� b Ñ T by inserting b as
follows:

1. Let b̃ be the largest entry less than or equal to b in the first row of T . If no such b̃ exists, simply
place b at the end of the first row.

2. If b̃ does exists, replace (bump) b̃ with b and proceed to insert b̃ into the second row using the method
just described.

The authors in [13] provide an analogous algorithm on row-strict composition tableaux.

Definition 7 (RCT Insertion) Let U be a RCT with longest row of lengthm, and let b be a positive integer.
One can obtain U 1 :� U Ð b by inserting b as follows. Scan the entries of U in reverse column reading
order, that is top to bottom in each column starting with the right-most column and working leftwards,
starting with column m� 1 subject to the conditions:

1. In column m� 1, if the current position is at the end of a row of length m, and b is strictly less than
the last entry in that row, then place b in this empty position and stop. If no such position is found,
begin scanning at the top of column m.

2. (a) Inductively, suppose some entry bj begins scanning at the top of column j. In column j, if the
current position is empty and at the end of a row of length j � 1, and bj is strictly less than
the last entry in that row, then place bj in this empty position and stop.
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(b) If a position in column j is nonempty and contains b̃j ¤ bj such that bj is strictly less than
the entry immediately to the left of b̃j , let bj bump b̃j and continue scanning column j with
the entry b̃j , bumping whenever possible. After scanning the last entry in column j, begin
scanning column j � 1.

3. If an entry b1 is bumped into the first column, then place b1 in a new row that appears after the last
entry in the first column that is weakly less than b1.

In [13] the authors show U 1 � U Ð b is a row-strict composition tableau. The algorithm of inserting b
into U determines a set of boxes in U 1 called the insertion path of b and denoted Ipbq, which is precisely
the set of boxes in U 1 which contain an entry bumped during the algorithm. We call the row in U 1 in which
the new box is added the row augmented by insertion. We establish several new lemmas concerning RCT
insertion that are instrumental in proving the main theorem in Section 3.

Lemma 8 Let U be a RCT and b be a positive integer. Then each row of U 1 � U Ð b contains at most
one box from Ipbq.

Lemma 9 Let U be a RCT and b be a positive integer. Let U 1 � U Ð b with row i of U 1 being the row
augmented by insertion. Then for all rows r ¡ i of U 1, the length of row r is not equal to the length of
row i.

Lemma 10 (Main Bumping Lemma) Let U be a RCT, and let a, b, and c be positive integers with a  
b ¤ c. Consider successive insertions U1 :� pU Ð bq Ð c and U2 :� pU Ð bq Ð a. Let Ba �
pia, jaq, Bb � pib, jbq, and Bc � pic, jcq be the new boxes created after inserting a, b, and c, respectively,
into the appropriate RCT. Let i1 be a row in U1 which contains a box pi1, j1q from Ipbq and a box pi1, j11q
from Ipcq. Similarly, let i2 be a row in U2 which contains a box pi2, j2q from Ipbq and a box pi2, j12q from
Ipaq. Then

1. In U1, jc ¤ jb. In U2, ja ¡ jb.

2. In U1, j11 ¤ j1. In U2, j12 ¡ j2.

Part (1.) of Lemma 10 says the new box Bc is weakly left of the new box Bb in U1, and the new box
Ba is strictly right of the new box Bb in U2. Part (2.) of Lemma 10 says that in any row which contains
a box from both Ipbq and Ipcq, or from both Ipbq and Ipaq, then in this row Ipcq is weakly left of Ipbq in
U1, and Ipaq is strictly right of Ipbq in U2.

Lemma 11 Consider the RCT obtained after n successive insertions

Un :� p� � � ppU Ð b1q Ð b2q � � � q Ð bn

with b1 ¤ b2 ¤ � � � ¤ bn. Let B1, B2, . . . , Bn be the corresponding new boxes. Then in Un,

Bn  col Bn�1  col � � �  col B1.

Knuth’s contribution to the RSK algorithm included describing Schensted insertion in terms of two
elementary transformations K1 and K2 which act on words w. Let a, b, and c be positive integers. Then
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K1 : bcaÑ bac if a   b ¤ c
K2 : acbÑ cab if a ¤ b   c

.

The relations K1,K2, and their inverses K�1
1 ,K�1

2 , act on words w by transforming triples of consec-

utive letters. Denote by
1
� the equivalence relation defined by using K1 and K�1

1 . That is, w
1
� w1 if and

only if w can be transformed into w1 using a finite sequence of transformations K1 or K�1
1 . The following

lemma is extremely useful in proving Theorem 13.

Lemma 12 Let U be a RCT and let w and w1 be two words such that w
1
� w1. Then

U Ð w � U Ð w1.

3 Littlewood-Richardson type rule
The main theorem of this article is the following.

Theorem 13 Let sλ be the Schur function indexed by the partition λ, and let RSα be the row-strict
quasisymmetric Schur function indexed by the strong composition α. We have

RSα � sλ �
¸
β

Cβα,λRSβ (1)

where Cβα,λ is the number of Littlewood-Richardson skew RCT of shape β{α and content λ�.

Theorem 13 is established by constructing a bijection ρ between pairs pU, T q and pV, Sq, where U is a
RCT of shape α, T a tableau of shape λt, V is a RCT of shape β, and S is a LR skew RCT of shape β{α
and content λ�.

Specifically, the bijection ρ is obtained in the following way. First, use RSK to map the pair pT, Tλq
to a two-line array wA. Then perform the insertion U Ð qwA while simultaneously recording in a skew
shape each new box, using the letters of pwA in order. The result is a pair pV, Sq. To invert this procedure,
perform the inverse of insertion on V using S in the following way. Find each occurrence of the entry
1 in S. Un-insert the entries in the corresponding boxes in V according to the order they appear with
respect to  col; that is, the smallest box in column reading order is un-inserted first. After each entry is
un-inserted we get a pair p1, jq. Inductively, find each occurrence of i in S and un-insert the entries in the
corresponding boxes of V in the order they appear with respect to  col, each time producing a pair pi, jq
for some j. When all entries have been removed from S, the result is a pair pU, T q.

Below is an example of the bijection ρ using the RCT of Example 3 and following the notation estab-
lished above.

U=

1

4 3 2

5 4

5 3

T=
4 3 2 1

4 3

2

Tλ =
4 3 2 1

4 3

4

pT, Tλq
RSK
ô

�
4 4 4 3 3 2 1
2 4 4 3 3 2 1
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V= U Ð2443321=

1

3 2

4 3 2

4

5 4 3 2 1

5 4 3

S=

8 8

8 4 3
8 8 8 8

8 4
8 8 8 4 2 1
8 8 8 3
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