R. Arandjelovic and A. Zisserman, Three things everyone should know to improve object retrieval, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6248018

A. Bellet, A. Habrard, and M. Sebban, A Survey on Metric Learning for Feature Vectors and Structured Data. ArXiv e-prints, 1306.

B. Bhattarai, G. Sharma, F. Jurie, and P. Pérez, Some Faces are More Equal than Others: Hierarchical Organization for Accurate and Efficient Large-Scale Identity-Based Face Retrieval, ECCV Workshops, 2014.
DOI : 10.1007/978-3-319-16181-5_12

URL : https://hal.archives-ouvertes.fr/hal-01061588

J. Bohné, Y. Ying, S. Gentric, and M. Pontil, Large Margin Local Metric Learning, ECCV, 2014.
DOI : 10.1007/978-3-319-10605-2_44

J. Bromley, I. Guyon, Y. Lecun, E. Sackinger, and R. Shah, Signature verification using a siamese time delay neural network, NIPS, 1993.

Q. Cao, Y. Ying, and P. Li, Similarity Metric Learning for Face Recognition, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.299

D. Chen, X. Cao, F. Wen, and J. Sun, Blessing of Dimensionality: High-Dimensional Feature and Its Efficient Compression for Face Verification, 2013 IEEE Conference on Computer Vision and Pattern Recognition, 2013.
DOI : 10.1109/CVPR.2013.389

S. Chopra, R. Hadsell, and Y. Lecun, Learning a Similarity Metric Discriminatively, with Application to Face Verification, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.202

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, Informationtheoretic metric learning, ICML, 2007.

M. Everingham, J. Sivic, and A. Zisserman, Taking the bite out of automated naming of characters in TV video, Image and Vision Computing, vol.27, issue.5, pp.545-559, 2009.
DOI : 10.1016/j.imavis.2008.04.018

A. Frome, Y. Singer, F. Sha, and J. Malik, Learning globallyconsistent local distance functions for shape-based image retrieval and classification, ICCV, 2007.

Z. Ghahramani and G. Hinton, The EM algorithm for mixtures of factor analyzers, 1996.

A. Globerson and S. Roweis, Metric learning by collapsing classes, NIPS, 2006.

M. Guillaumin, J. Verbeek, and C. Schmid, Is that you? Metric learning approaches for face identification, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459197

URL : https://hal.archives-ouvertes.fr/inria-00439290

M. Guillaumin, J. Verbeek, and C. Schmid, Multiple Instance Metric Learning from Automatically Labeled Bags of Faces, ECCV, 2010.
DOI : 10.1007/978-3-642-15549-9_46

URL : https://hal.archives-ouvertes.fr/inria-00548639

S. Hauberg, O. Freifeld, and M. Black, A geometric take on metric learning, NIPS, 2012.

Y. Hong, Q. Li, J. Jiang, and Z. Tu, Learning a mixture of sparse distance metrics for classification and dimensionality reduction, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126332

G. Huang, M. Ramesh, T. Berg, and E. Learned-miller, Labeled faces in the wild: a database for studying face recognition in unconstrained environments, 2007.

Y. Huang, C. Li, M. Georgiopoulos, and G. Anagnostopoulos, Reduced-Rank Local Distance Metric Learning, ECML, 2013. [21] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. PAMI, pp.117-128, 2011.
DOI : 10.1007/978-3-642-40994-3_15

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Köstinger, M. Hirzer, P. Wohlhart, P. Roth, and H. Bischof, Large scale metric learning from equivalence constraints, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247939

B. Kulis, Metric Learning: A Survey, Machine Learning, pp.287-364, 2012.
DOI : 10.1561/2200000019

S. Liao, Z. Lei, D. Yi, and S. Li, A benchmark study of largescale unconstrained face recognition, International Joint Conference on Biometrics, 2014.

A. Mignon and F. Jurie, PCCA: A new approach for distance learning from sparse pairwise constraints, 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.
DOI : 10.1109/CVPR.2012.6247987

URL : https://hal.archives-ouvertes.fr/hal-00806007

Y. Noh, B. Zhang, and D. Lee, Generative Local Metric Learning for Nearest Neighbor Classi???cation, NIPS, 2010.
DOI : 10.1109/TPAMI.2017.2666151

E. Nowak and F. Jurie, Learning Visual Similarity Measures for Comparing Never Seen Objects, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.382969

URL : https://hal.archives-ouvertes.fr/hal-00203958

T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Parkhi, A. Vedaldi, and A. Zisserman, Deep Face Recognition, Procedings of the British Machine Vision Conference 2015, 2015.
DOI : 10.5244/C.29.41

S. Roweis and L. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.2323-2326, 2000.
DOI : 10.1126/science.290.5500.2323

J. Sánchez, F. Perronnin, and T. De-campos, Modeling the spatial layout of images beyond spatial pyramids, Pattern Recognition Letters, vol.33, issue.16, pp.2216-2223, 2012.
DOI : 10.1016/j.patrec.2012.07.019

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, pp.222-245, 2013.
DOI : 10.1007/s11263-013-0636-x

F. Schroff, D. Kalenichenko, and J. Philbin, FaceNet: A unified embedding for face recognition and clustering, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298682

Y. Shi, A. Bellet, and F. Sha, Sparse compositional metric learning, AAAI, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01430847

K. Simonyan, O. Parkhi, A. Vedaldi, and A. Zisserman, Fisher Vector Faces in the Wild, Procedings of the British Machine Vision Conference 2013, 2013.
DOI : 10.5244/C.27.8

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition. CoRR, abs, 1409.

Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014.
DOI : 10.1109/CVPR.2014.220

Y. Teh and S. Roweis, Automatic alignment of local representations, NIPS, 2003.

J. Wang, A. Kalousis, and A. Woznica, Parametric local metric learning for nearest neighbor classification, NIPS, 2012.

J. Wang, K. Sun, F. Sha, S. Marchand-maillet, and A. Kalousis, Two-stage metric learning, ICML, 2014.

K. Weinberger and L. Saul, Distance metric learning for large margin nearest neighbor classification, JMLR, vol.10, pp.207-244, 2009.

D. Yi, Z. Lei, S. Liao, and S. Li, Learning face representation from scratch, Arxiv preprint, 2014.

D. Zhan, M. Li, Y. Li, and Z. Zhou, Learning instance specific distances using metric propagation, Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, 2009.
DOI : 10.1145/1553374.1553530

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=