L. C. Sincich and J. C. Horton, THE CIRCUITRY OF V1 AND V2: Integration of Color, Form, and Motion, Annual Review of Neuroscience, vol.28, issue.1, p.395, 2005.
DOI : 10.1146/annurev.neuro.28.061604.135731

N. Rust, V. Mante, E. Simoncelli, and J. Movshon, How MT cells analyze the motion of visual patterns, Nature Neuroscience, vol.15, issue.11, pp.1421-1431, 2006.
DOI : 10.1016/j.neuron.2005.05.021

J. Perrone and R. Krauzlis, Spatial integration by MT pattern neurons: A closer look at pattern-to-component effects and the role of speed tuning, Journal of Vision, vol.8, issue.9, pp.1-14, 2008.
DOI : 10.1167/8.9.1

D. Bradley and M. Goyal, Velocity computation in the primate visual system, Nature Reviews Neuroscience, vol.19, issue.9, pp.686-695, 2008.
DOI : 10.1038/nrn2472

C. Pack, R. Born, R. H. Masland, T. D. Albright, T. D. Albright et al., Cortical mechanisms for the integration of visual mo- 408 tion The Senses: A Com- 411 prehensive Reference, pp.189-218, 2008.

J. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America A, vol.2, issue.7, pp.1160-1169, 1985.
DOI : 10.1364/JOSAA.2.001160

E. Adelson and J. Bergen, Spatiotemporal energy models for the perception of motion, Journal of the Optical Society of America A, vol.2, issue.2, pp.284-321, 1985.
DOI : 10.1364/JOSAA.2.000284

]. N. Grzywacz and A. Yuille, A model for the estimate of local image velocity 420 by cells in the visual cortex, Proceeding of the Royal Society of London, vol.421, pp.419-239, 1990.

G. C. Deangelis, I. Ohzawa, and R. D. Freeman, Spatiotemporal organization 423 of simple-cell receptive fields in the cat's striate cortex. II. Linearity of 424, How MT cells [18] U. Ilg, G. Masson, Dynamics of Visual Motion Processing: Neuronal, pp.422-441

J. Bouecke, E. Tlapale, P. Kornprobst, and H. Neumann, Neural mecha- 444 nisms of motion detection, integration, and segregation: From biology 445 to artificial image processing systems in Signal Processing 2011, special issue on Biologically inspired signal 447 processing: Analysis, algorithms, and applications. 448 [20] D. Heeger, Optical flow using spatiotemporal filters, The International 449, EURASIP Journal on Advances Journal of Computer Vision, vol.446, issue.14, pp.279-302, 1988.

]. S. Nowlan and T. Sejnowski, Filter selection model for motion segmentation 451 and velocity integration, 453 inspired computer vision: Setting the basis for a new departure, pp.450-3177, 1994.

B. Lucas and T. Kanade, An iterative image registration technique with 456 an application to stereo vision, International Joint Conference on 457 Artificial Intelligence, pp.674-679, 1981.

]. E. Simoncelli and E. H. Adelson, Computing optical flow distributions using 459 spatio-temporal filters, Tech. rep., MIT Media Lab Vision and Modeling, 460 Tech, p.458, 1991.

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black et al., 465 A database and evaluation methodology for optical flow, International 466, tive field model explains responses of area MT neurons to naturalistic 463 movies, pp.14551-14564, 2011.

G. R. Stoner, T. D. Albright, and V. S. Ramachandran, Transparency and 468 coherence in human motion perception The role of early mechanisms in motion 471 transparency and coherence, Skottun, Neuronal responses to plaids, pp.467-153, 1990.

]. L. Paninski, Maximum likelihood estimation of cascade point-process 475 neural encoding models, Network: Computation in Neural Systems 476, pp.474-243, 2004.

J. H. Maunsell and D. C. Van-essen, Functional properties of neurons in 478 middle temporal visual area of the macaque monkey. I. selectivity for 479 stimulus direction, speed, and orientation, Journal of Neurophysiology, vol.480, issue.5, pp.49-1127, 1983.

]. A. Pouget, K. Zhang, S. Deneve, and P. E. Latham, Statistically efficient 482 estimation using population coding, Neural Computation, vol.10, issue.483, pp.481-373, 1998.

K. R. Rad, L. Paninski, J. Shawe-taylor, R. S. Zemel, P. L. Bartlett et al., Information rates and optimal decoding in large 485 neural populations, NIPS Bilateral filtering: The- 488 ory and applications, Foundations and Trends in Computer Graphics 489 and Vision, pp.484-846, 2011.

C. A. Bergen, E. H. Adelson, P. Burt, and J. Ogden, Pyramid methods 491 in image processing, RCA Engineer, pp.490-519, 1984.

E. P. Simoncelli, C. C. Pack, and R. T. Born, Course-to-fine estimation of visual motion Temporal dynamics of a neural solution to 496 the aperture problem in visual area MT of macaque brain, IEEE 493 Eighth Workshop on Image and Multidimensional Signal Processing, pp.492-495, 2001.

G. C. Deangelis, I. Ohzawa, and R. D. Freeman, Receptive-field dynamics 499 in the central visual pathways, Trends in Neurosciences, vol.18, issue.500, pp.498-451, 1995.

D. A. Clausi and M. E. Jernigan, Designing Gabor filters for optimal texture 502 separability, Pattern Recognition, vol.33, issue.11, pp.501-1835, 2000.

T. D. Albright and R. Desimone, Local precision of visuotopic organization 504 in the middle temporal area (MT) of the macaque, Experimental Brain Research, vol.505, issue.653, pp.503-582, 1987.

]. P. Bayerl and H. Neumann, Disambiguating visual motion through contex- 507 tual feedback modulation Performance of optical flow tech- 510 niques, Neural Computation The International Journal of Computer Vision, vol.16, issue.511, pp.506-2041, 1994.

P. Bayerl, H. Neumann, ]. A. Bruhn, J. Weickert, and C. Schnrr, Disambiguating visual motion through contex- 513 tual feedback modulation Lucas/kanade meets horn/schunck: 516 Combining local and global optic flow methods, Migliore, N. T. Carnevale, G. M. Shepherd, pp.512-2041, 2004.