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ABSTRACT It is not clear how these spatio-temporal Iter based mod-

Motion processing in primates is an intensely studied probels deal with several naturalistic scenarios such as motion
lem in visual neurosciences and after more than two decad@undaries, and occlusions. It is also not clear how these
of research, representation of motion in terms of motion enmethods could produce a spatially accurate estimation in term
ergies computed by V1-MT feedforward interactions remain®f recovering dense optical ow as lIter-based models tend
a strong hypothesis. Thus, decoding the motion energies is § smooth the images. Modern computer vision datasets with
natural interest for developing biologically inspired computerground truth, such as Middlebury dataset [8], give us an op-
vision algorithms for dense optical ow estimation. Here, we portunity to study these aspects also with respect to the prob-
address this problem by evaluating four strategies for motiofem of decoding. The goal of this paper is to evaluate four de-
decoding: intersection of constraints, linear decoding througkoding strategies to estimate optical ow from motion tuned
learned weights on MT responses, maximum likelihood andpopulation response.
regression with neural network using multi scale-f_ea_tur(_as. We  This paper is organised as follows. In Sect. 2, we present
charqctenze the pe_rformances and the cu_rrent limitations %e basis of our approach, which is a feedforward model of
the dllfferen_t straFegles, in terms of recovering dgnse OW€Sy/1 and MT cortical areas: We start from the model [9] in
timation using Middlebury penphmark dataset widely used Nwhich we revisited the seminal work by Heeger and Simon-
computer vision, and we highlight key aspects for future de—Celli [10, 11] (see Fig. 1). In Sect. 3, we propose three de-
velopments. coding strategies to estimate optical ow based on MT popu-

Index Terms— Optical ow, spatio-temporal Iters, mo- lation response and a fourth one based on V1 population re-
tion energy, population code, V1, MT, Middlebury dataset, sponse. These four strategies are then evaluated and discussed

in Sect. 4 using classical sequences from the literature.

1. INTRODUCTION

Visual motion estimation is a widely studied problem in both

computer vision and visual neuroscience. How do primate IT —f’ EV —E" v
estimate motion has been a question of intense focus in v I ' ' /
sual neuroscience yet only partly understood owing both t Werp <>

underlying complexity and to the experimental stimuli that St [_| 5 —— EV—E" v+ w
has been used (see [1] for a review). The limitations of the 1 ' f/—
experimental and modeling studies in motion estimation st —

far have been well explained by Nishimoto et al. [2], in terms s, — ——f» EVI —EMT lvg + v1

W f

of partial coverage in spatio-temporal frequency domain, e.g
only direction of motion [3, 4] or two-dimensional slice [5, 6].
Though in [2] the authors show that the widely accepted feedeig. 1. |llustration of the FFVAMT approach [9] based on a
forward spatio-temporal ltering model is a good t for ex- feedforward model of V1 and MT cortical layers and a coarse
plaining neural responses to naturalistic videos, the model hag ne implementation. At each scale, decoded velocities
not been tested in terms of recovering the dense VelOCity VeE¢t a coarser scale are used to warp V1 motion energies at
tor eld, called optical ow, which has been extensively stud- the ner scale (shown in red). Code available on ModelDB:
ied in computer vision due to its broad application potentialhttp://senselab.med.yale.edu/modeldb

(see [7] for a review)

Both authors M. C. and N.V.K. M. should be considered as rst author.



2. V1-MT MODEL FOR MOTION PROCESSING where0Q < " 1is a small constant to avoid divisions by

zero in regions with no energies, which happens when no

This section describes how V1 and MT responses are esipatio-temporal texture is present.

mated at a given scale and we refer the reader to [9] for more

details about the coarse to ne approach (see Fig. 1). 2.2. Area MT: Pattern Cells Response

2.1. Area V1: Motion Energy MT neurons exhibit velocity tuning irrespective of the local
structure orientation. This is believed to be achieved by pool-

Simple cells are characterized by the preferred spatial oring afferent V1 responses in both spatial and orientation do-

entation of their contrast sensitivity in the spatial domain mains followed by a non-linearity [4, 11]. The response of a

and their preferred velocity® in the direction orthogonal MT pattern cell tuned to the speetiand to direction of speed
to their contrast orientation often referred to as componen can be expressed by

speed. The receptive elds of the V1 simple cells are classi- I
cally modeled using band-pass lters in the spatio-temporal MT oo Vi oo o ' _
domain. In order to achieve low computational complexity,E~ (Pit:d;vs )= F wa( )P(ET)(pit v )
the spatio-temporal Iters are decomposed into separable I- i=1

ters in space and time. Spatial component of the lter is dewherew, represents the MT linear weights that give origin to

scribed by Gabor lterd and temporal component by an ex- the MT tuning. It can be de ned by a cosine function shifted
ponential decay functiok. We de ne the following complex  over various orientations [4,12], i.e.,

Iters:
(x2+y2) wg( )=cos(d ) d2][0;2 [
h oo f = Be T2z ei2 (fscos( )x+fgsin ( )y);
(p s) Then,P(EV?!) corresponds to the spatial pooling and is de-

k(t;f,)=el g2 (. ned by
where and are the spatial and temporal scales respectivelyp Viu s e i 1X £ (ko OWEYi(Dt -ye )-
which are related to the spatial and temporal frequerfcies (ETpL v )= A , (ko PRET (Pt iive )
andf; and to the bandwidth of the Iter. Denoting the real and P

3)
wheref (s) = exp(s?=2 2), kikis theL,-norm, isa con-
stant, A is a normalization term (here equal 2o ?) and
F(s) = exp(s) is a static nonlinearity chosen as an expo-
nential function [4]. The pooling de ned by (3) is a spatial
Go(pit; VS ) =ho(p; ;f s)ke(t; T1) + he(p; ;f s)ko(t;fr); Gaussian pooling.

cte ey Ce ) — .. . .. Ry Figure 2 shows examples of MT responses at (a) single
Ge(P;t; ;v™; ) =he(p; ;f s)ke(t;fe)  ho(p; 5 s)ko(t;f4): cell and (b) population levels. In this paper, the velocity space
These odd and even symmetric and tilted (in space-time davas sampled by considering MT neurons that span over the 2-
main) lters characterize V1 simple cells. Using these ex-D velocity space with a preferred set@f= 19 tuning speed
pressions, we de ne the response of simple cells, either oddirectionsd; ::dg in [0;2 [andM = 7 tuning speeds::v§,
or even, with a preferred direction of contrast sensitivilm  in the range 1 pixel/frame.
the spatial domain, with a preferred velocit§ and with a

spatial scale by 3. DECODING OF THE VELOCITY
(pit) REPRESENTATION OF AREA MT
Roze(Pit; ;VE )= Gome(pit; 5V ) T 1(pit); (1)

wherel (p;1) is a gray-scale sequence, de ned at positioné” qrder to engi_neer an algorithm capable of recovering dense
p = (x;y) and timet > 0. The complex cells are described OPtical ow estimatesv(p;t) = (vx;vy)(p;t), we need to
as a combination of the quadrature pair of simple cells (1) b@ddress the problem of decoding the population responses of

imaginary components of the complex Itelnsandk ashe; ke
andh,; ko respectively, and a preferred velocity (speed mag
nitude)v® = f,=fg, we introduce the odd and even spatio-
temporal lIters de ned as follows,

using the motion energy formulation tuned MT neurons. Indeed, a unique velocity vector cannot
) ) be recovered from the activity of a single velocity tuned MT
E(t; ;vS )= Ro(pit; ;vE )+ Re(pit; ;vE )% neuron as multiple scenarios could evoke the same activity.

followed by a normalization: assuming that we consider At-llowev?r!ta UPI'\%{G VﬁCttor C?jnt bz;fecovcteredtfroné_the tpopula—
nite set of orientations = ;::: N, the nal V1 response lon activity 0 cells tuned lo different motion directions.

is given by Four decoding strategies are proposed and evaluated. We
rst propose three decoding methods for computing velocity
E(p;t; ;vE ) L@ from the MT response at each scale [9] (see Figinigr-

EVl(p.t. .Vc. ): P ' ' ) |
B iN:1 E(p;t; i;ve; )+ " section of constraintdOC), linear decoding through learned




1.3 10.16
1 0
0.7 -0.16

Fig. 2. MT response. (a) Example of an MT direction tun- Fig. 3. Two-dimensional matrices of weights learned using
ing curve for a cell tuned at = =5 responding to moving sequences of random dots and used to decode (ahd (b)
random dot stimuli that span all the speed directions. (b) Exvy- In these plots, we represent only half of the matixfor
ample of MT population response at a given image poifdar V¢ =[0;0:4; 0:7; 0:9].

a random dot sequence that moves,at 0:3 andvy = 0:3
pixel/frame. The MT population response shows a peak fmi_

the direction and the speed present in the input stimulus. The learn the weights, we used a dataseg of 7 random dot

range of the responses is between 0.7 and 1.3. sequences v_wth known opucall owg: (8 d|rect|o'ns and 7
speeds), which cover the spatio-temporal lters' range, and

we estimatedV by minimizing the cost functioh.:
weights(LW), andmaximum likelihoo@ML). Note that these . P,
decoding methods will impact the quality of the optical ow L(W) = IRW  vgj”+ W 5 (6)
extracted at each scale and used for the warping. Then we, . . :
: . whereR is a matrix whose rows contain the MT popula-
propose a fourth strategy, calleelyression with neural net-

work (RegNN), which learns to estimate optical ow directly tion responses (for Fhe whole training sefy, 'S th? yector
of weights,vg: contains the ground truth speegs,jj is the
from the V1 responses at every scales.

L >-norm and we chose = 0:05. It is worth to note that such
) ) ) procedure has been carried out at a single spatial scale. Since
3.1. Intersection of Constraints Decoding (I0C) we use random dots, we have considered the average MT re-

The MT response is obtained through a static nonlinearity de3Ponse. Figure 3 shows the learned two-dimension matrix of
scribed by an exponential function, thus we can linearly deWeights.

code the population activities [13]. Since the distributed rep-

resentation of velocity is described as a function of two pa3.3. Maximum Likelihood Decoding (ML)

rameters (speed® and directiord), rst we linearly decode The MT response can be decoded with a Maximum Like-

the speed (velocity magnitude) for each speed direction, thqﬂmod technique [14]. In this paper, the ML estimate is

we apply the IOC [1] to compute the speed direction. The . )
speed along directiod can be expressed as: performed through a curve tting, or template matching,

method. In particular, we decode the MT activities by nding
the Gaussian function that best match the population re-

Vi(pitid; )= VPEMT (prtid; v ): (4)  sponse. The position of the peak of the Gaussian corresponds
i=1 to the ML estimate.
Then the 10C solution is de ned by solving the minimization
problem 3.4. Decoding by Regression with Neural Network (RegNN)
= in f . . .
v argvrvn in 1G(w)g ©) For the regression using neural network, spatio-temporal en-

where ergies representative of the V1 complex cell responses are
computed across various scales and are concatenated to form
an input vector of dimension 504 (6 scalesl2 orientations

7 velocities). The feature computation stage is illustrated
in Fig. 4. It is worth to note that in this decoding strategy we
where ()T indicates the transpose operation. Solving (5)do not use the coarse to ne approach. We use a feedforward

Gw)= (v w (cosdi;sind)T)?
i=1

gives: =) network comprising of a hidden sigmoidal layer and a linear
Vy = % P iQ:1 vi(p;t;d;; )cosdi; output layer with 400 neurons in the hidden layer and 2 neu-
vy = % iQ:1 vid(p:t;di; )sind;: rons in the output layer, computing velocity alorgandy

axis. The hidden layer can be interpreted as MT cells tuned
to different velocities. For training the network, subsampled
features by a factor of 30 from Middlebury sequences are used
The MT response can be decoded by learning the twoand the network is trained for 500 epochs using back propaga-
dimensional matrix of weight®v so thatv = EMT W. tion algorithm till the RMSE of the network over the training

3.2. Linear Decoding Through Learned Weights (LW)



ing. Results are promising although further invastigations are
needed to reach the state-of-the-art performances. Our future
work will focus on incorporating spatial pooling of motion
energies and spatial interaction at MT level into the model.
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samples has reached 0.3. Note that we only have a single
network or a regressor and it is applied to all pixels. For train- [1]
ing and simulating the experiment PyBrain package has been
used.

(2]
4. EXPERIMENTAL EVALUATION AND
DISCUSSION

Table 1 shows the average angular errors (AAE) and the[3]
end-point errors (EPE) with the corresponding standard de-
viations, by considering the Middlebury training set and the
Yosemite sequence. Results for the four decoding strategies
(IOC, LW, ML and RegNN) are reported. Some sample opti- [4]
cal ows for the four decoding methods are reported in Fig. 5.
Results show that the I0C approach gives estimates similar
to the ones obtained by considering LW. The ML approach
does not perform as well as the I0C one: this is due to the
actual MT activity pattern, and to the fact that MT population [5]
responses for low speed has several peaks and it is hard to t

a Gaussian.

Observing the results obtained after decoding suggests
that scale-space with warping procedure is not well suited for[6]
analysis with spatio-temporal features and produces larger
errors when compared to the regression scheme where the
spatio-temporal motion energies across scales are simultane-
ously taken into consideration. This is in accordance with ear-[7]
lier model by Heeger, where plane tting in spatio-temporal
domain has been adapted, indicating that interscale interac-
tions are critical in velocity decoding. The RegNN approach 8]
has preserved motion edges much better when compared t[}
the warping scheme in most of the sequences, but however it
fails in the Yosemite sequence, which indicates that there is
some diffusion happening in regions without motion energy
as could be seen in the sky region. The responses of thd®]
network need to be more smooth to better match the ground
truth, however this is to be expected as this regression scheme
does not have any neighborhood interactions and smoothness
criterion in place. [10]

As a whole, this paper provides a rst comparative study
of several motion estimation approaches by population decod-

deMACS), and from the PAR-FAS 2007-2013 (regione Ligu-
ria) project ARIANNA.
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I0C LW ML RegNN

Sequencef AAE STD EPE STD | AAE STD EPE STD | AAE STD EPE STD | AAE STD EPE STD
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grove3| 9.7 19.0 11 18 99 188 12 18 13.7 25.7 15 23 9.7 154 10 14
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Yosemite| 3.5 2.9 0.2 02 3.8 3.0 0.2 0.2 53 7.2 0.3 0.7 20.1 147 09 0.9

all | 9.2 153 0.7 1.2 9.3 16.6 08 13 123 229 1.1 17 8.0 11.6 06 0.8

Table 1. Error measurements on Middlebury training set and on the Yosemite sequence.
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Fig. 5. Sample results on a subset of Middlebury training set and on the Yosemite sequence (see Tab. 1 for the quantitati
evaluation).
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