L. Adleman, J. Demarrais, and M. D. Huang, A subexponential algorithm for discrete logarithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over finite fields, ANTS I, pp.28-40, 1994.
DOI : 10.1007/3-540-58691-1_39

D. Augot and F. Morain, Discrete logarithm computations over finite fields using Reed-Solomon codes. arXiv:1202, p.4361, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00672050

R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange et al., Handbook of elliptic and hyperelliptic cryptography, 2006.

L. Babai and E. Szemerédi, On The Complexity Of Matrix Group Problems I, 25th Annual Symposium onFoundations of Computer Science, 1984., pp.229-240, 1996.
DOI : 10.1109/SFCS.1984.715919

D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos et al., URL http, Report, p.541, 2009.

D. J. Bernstein and T. Lange, Computing Small Discrete Logarithms Faster, INDOCRYPT 2012, pp.317-338
DOI : 10.1007/978-3-642-34931-7_19

D. J. Bernstein and T. Lange, Non-uniform Cracks in the Concrete: The Power of Free Precomputation, ASIACRYPT 2013, pp.321-340, 2013.
DOI : 10.1007/978-3-642-42045-0_17

D. J. Bernstein and T. Lange, Two grumpy giants and a baby, Proceedings of the Tenth Algorithmic Number Theory Symposium, Open Book Series, pp.87-111, 2013.
DOI : 10.2140/obs.2013.1.87

D. J. Bernstein, T. Lange, and R. R. Farashahi, Binary Edwards Curves, CHES 2008, pp.244-265, 2008.
DOI : 10.1007/978-3-540-85053-3_16

D. J. Bernstein, T. Lange, and P. Schwabe, On the Correct Use of the Negation Map in the Pollard rho Method, PKC 2011, pp.128-146, 2011.
DOI : 10.1007/978-3-642-19379-8_8

S. R. Blackburn and S. Murphy, The number of partitions in Pollard rho, 1998.

I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptography, Cambridge, 1999.
DOI : 10.1017/CBO9781107360211

I. F. Blake, G. Seroussi, and N. P. Smart, Advances in Elliptic Curve Cryptography, Cambridge, 2005.
DOI : 10.1017/CBO9780511546570

D. Boneh and X. Boyen, Short Signatures Without Random Oracles, EUROCRYPT 2004, pp.56-73, 2004.
DOI : 10.1007/978-3-540-24676-3_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.5374

J. W. Bos, C. Costello, and A. Miele, Elliptic and Hyperelliptic Curves: A Practical Security Analysis, PKC 2014, pp.203-220, 2014.
DOI : 10.1007/978-3-642-54631-0_12

J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery, Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction, International Journal of Applied Cryptography, vol.2, issue.3, pp.212-228, 2012.
DOI : 10.1504/IJACT.2012.045590

J. W. Bos, T. Kleinjung, and A. K. Lenstra, On the Use of the Negation Map in the Pollard Rho Method, ANTS IX, pp.66-82, 2010.
DOI : 10.1007/978-3-642-14518-6_9

D. R. Brown and R. P. Gallant, The static Diffie-Hellman problem. Cryptology ePrint Archive, Report, p.306, 2004.

M. Chateauneuf, A. C. Ling, and D. R. Stinson, Slope packings and coverings, and generic algorithms for the discrete logarithm problem, Journal of Combinatorial Designs, vol.1223, issue.1, pp.36-50, 2003.
DOI : 10.1002/jcd.10033

Q. Cheng, Hard Problems of Algebraic Geometry Codes, IEEE Transactions on Information Theory, vol.54, issue.1, pp.404-406, 2008.
DOI : 10.1109/TIT.2007.911213

J. H. Cheon, Security Analysis of the Strong Diffie-Hellman Problem, EUROCRYPT 2006, pp.1-11, 2006.
DOI : 10.1007/11761679_1

J. H. Cheon, Discrete Logarithm Problems with Auxiliary Inputs, Journal of Cryptology, vol.10, issue.1, pp.457-476, 2010.
DOI : 10.1007/s00145-009-9047-0

J. H. Cheon, T. Kim, and Y. S. Song, A group action on Z * p and the generalized DLP with auxiliary inputs, SAC 2013, pp.121-135, 2014.

C. Diem, The GHS-attack in odd characteristic, J. Ramanujan Math. Soc, vol.18, issue.1, pp.1-32, 2003.

C. Diem, An Index Calculus Algorithm for Plane Curves of Small Degree, ANTS VII, pp.543-557, 2006.
DOI : 10.1007/11792086_38

C. Diem, On the discrete logarithm problem in class groups of curves, Mathematics of Computation, vol.80, issue.273, pp.443-475, 2011.
DOI : 10.1090/S0025-5718-2010-02281-1

C. Diem, Abstract, Compositio Mathematica, vol.6, issue.01, pp.75-104, 2011.
DOI : 10.1112/S0010437X10005075

C. Diem, On the discrete logarithm problem in elliptic curves II, Algebra & Number Theory, vol.7, issue.6, pp.1281-1323, 2013.
DOI : 10.2140/ant.2013.7.1281

C. Diem and S. Kochinke, Computing discrete logarithms with special linear systems, 2013.

C. Diem and J. Scholten, Cover attacks -a report for the AREHCC project, 2003.

Y. Driencourt and J. F. Michon, Elliptic codes over fields of characteristics 2, Journal of Pure and Applied Algebra, vol.45, issue.1, pp.15-39, 1987.
DOI : 10.1016/0022-4049(87)90081-8

J. Faugère, P. Gaudry, L. Huot, and G. Renault, Sub-cubic change of ordering for Gröbner basis: a probabilistic approach, pp.170-177, 2014.

J. Faugère, P. Gianni, D. Lazard, and T. Mora, Efficient Computation of Zero-dimensional Gr??bner Bases by Change of Ordering, Journal of Symbolic Computation, vol.16, issue.4, pp.329-344, 1993.
DOI : 10.1006/jsco.1993.1051

J. Faugère, L. Huot, A. Joux, G. Renault, and V. Vitse, Symmetrized Summation Polynomials: Using Small Order Torsion Points to Speed Up Elliptic Curve Index Calculus, EUROCRYPT 2014, pp.40-57, 2014.
DOI : 10.1007/978-3-642-55220-5_3

J. C. Faugère, P. Gaudry, L. Huot, and G. Renault, Using Symmetries in the Index Calculus for Elliptic Curves Discrete Logarithm, Journal of Cryptology, vol.32, issue.1, pp.595-635, 2014.
DOI : 10.1007/s00145-013-9158-5

J. C. Faugère, L. Perret, C. Petit, and G. Renault, Improving the Complexity of Index Calculus Algorithms in Elliptic Curves over Binary Fields, EUROCRYPT 2012, pp.27-44, 2012.
DOI : 10.1007/978-3-642-29011-4_4

P. Fouque, A. Joux, and C. Mavromati, Multi-user Collisions: Applications to Discrete Logarithm, Even-Mansour and PRINCE, ASIACRYPT 2014, pp.420-438, 2014.
DOI : 10.1007/978-3-662-45611-8_22

URL : https://hal.archives-ouvertes.fr/hal-01094051

G. Frey, Applications of arithmetic geometry to cryptographic constructions, Finite Fields and Applications, pp.128-161, 2001.

G. Frey, On the relation between Brauer groups and discrete logarithms, Tatra Mt. Math. Publ, vol.35, pp.1-29, 2006.

S. D. Galbraith, Abstract, LMS Journal of Computation and Mathematics, vol.549, pp.118-138, 1999.
DOI : 10.2307/2006496

S. D. Galbraith, Mathematics of public key cryptography, 2012.
DOI : 10.1017/CBO9781139012843

S. D. Galbraith and S. W. Gebregiyorgis, Summation Polynomial Algorithms for Elliptic Curves in Characteristic Two, DOCRYPT 2014, pp.409-427, 2014.
DOI : 10.1007/978-3-319-13039-2_24

S. D. Galbraith, F. Hess, and N. P. Smart, Extending the GHS Weil Descent Attack, EUROCRYPT 2002, pp.29-44, 2002.
DOI : 10.1007/3-540-46035-7_3

S. D. Galbraith, J. M. Pollard, and R. S. Ruprai, Computing discrete logarithms in an interval, Mathematics of Computation, vol.82, issue.282, pp.1181-1195, 2013.
DOI : 10.1090/S0025-5718-2012-02641-X

S. D. Galbraith and R. S. Ruprai, Using Equivalence Classes to Accelerate Solving the Discrete Logarithm Problem in a Short Interval, PKC 2010, pp.368-383, 2010.
DOI : 10.1007/978-3-642-13013-7_22

S. D. Galbraith and N. P. Smart, A Cryptographic Application of Weil Descent, IMA Cryptography and Coding, pp.191-200, 1999.
DOI : 10.1007/3-540-46665-7_23

S. D. Galbraith, P. Wang, and F. Zhang, Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm, Preprint, 2015.

R. P. Gallant, R. J. Lambert, and S. A. Vanstone, Improving the parallelized Pollard lambda search on anomalous binary curves, Mathematics of Computation, vol.69, issue.232, pp.1699-1705, 2000.
DOI : 10.1090/S0025-5718-99-01119-9

P. Gaudry, Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem, Journal of Symbolic Computation, vol.44, issue.12, pp.1690-1702, 2009.
DOI : 10.1016/j.jsc.2008.08.005

URL : https://hal.archives-ouvertes.fr/inria-00337631

P. Gaudry, F. Hess, and N. P. Smart, Constructive and destructive facets of Weil descent on elliptic curves, Journal of Cryptology, vol.44, issue.1, pp.19-46, 2002.
DOI : 10.1007/s00145-001-0011-x

URL : https://hal.archives-ouvertes.fr/inria-00512763

P. Gaudry and ´. E. Schost, A Low-Memory Parallel Version of Matsuo, Chao, and Tsujii???s Algorithm, ANTS VI, pp.208-222
DOI : 10.1007/978-3-540-24847-7_15

P. Gaudry, E. Thomé, N. Thériault, and C. Diem, A double large prime variation for small genus hyperelliptic index calculus, Mathematics of Computation, vol.76, issue.257, pp.475-492, 2007.
DOI : 10.1090/S0025-5718-06-01900-4

URL : https://hal.archives-ouvertes.fr/inria-00000897

E. Gorla and M. Massierer, Index calculus in the trace zero variety. Cryptology ePrint Archive, Report, vol.2014318, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097427

R. Granger, On the Static Diffie-Hellman Problem on Elliptic Curves over Extension Fields, Lecture Notes in Computer Science, vol.6477, pp.283-302, 2010.
DOI : 10.1007/978-3-642-17373-8_17

R. Granger, A. Joux, and V. Vitse, New timings for oracle-assisted SDHP on the IPSEC Oakley " well known group " 3 curve, 2010.

R. K. Guy, The Strong Law of Small Numbers, The American Mathematical Monthly, vol.95, issue.8, pp.697-712, 1988.
DOI : 10.2307/2322249

D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography, 2004.

F. Hess, Computing relations in divisor class groups of algebraic curves over finite fields, 2003.

F. Hess, Abstract, LMS Journal of Computation and Mathematics, vol.18, pp.167-192, 2004.
DOI : 10.1109/18.259647

Y. Hitchcock, P. Montague, G. Carter, and E. Dawson, The efficiency of solving multiple discrete logarithm problems and the implications for the security of fixed elliptic curves, International Journal of Information Security, vol.12, issue.2, pp.86-98, 2004.
DOI : 10.1007/s10207-004-0045-9

T. J. Hodges, C. Petit, and J. Schlather, First fall degree and Weil descent. Finite Fields and Their Applications 30, pp.155-177, 2014.

J. Hong and H. Lee, ANALYSIS OF POSSIBLE PRE-COMPUTATION AIDED DLP SOLVING ALGORITHMS, Journal of the Korean Mathematical Society, vol.52, issue.4, pp.797-819, 2015.
DOI : 10.4134/JKMS.2015.52.4.797

M. A. Huang, M. Kosters, and S. L. Yeo, Last Fall Degree, HFE, and Weil Descent Attacks on ECDLP, CRYPTO 2015, pp.581-600, 2015.
DOI : 10.1007/978-3-662-47989-6_28

M. D. Huang and W. Raskind, Abstract, LMS Journal of Computation and Mathematics, vol.1, pp.228-263, 2009.
DOI : 10.2307/3062142

URL : https://hal.archives-ouvertes.fr/hal-01418465

M. D. Huang, M. Kosters, Y. Yang, and S. L. Yeo, On the last fall degree of zerodimensional Weil descent systems ArXiv preprint 1505, p.2532, 2015.

Y. Huang, C. Petit, N. Shinohara, and T. Takagi, Improvement of Faug??re et al.???s Method to Solve ECDLP, IWSEC 2013, pp.115-132, 2013.
DOI : 10.1007/978-3-642-41383-4_8

Y. Huang, C. Petit, N. Shinohara, and T. Takagi, On generalized first fall degree assumptions. Cryptology ePrint Archive, p.358, 2015.

J. H. Hyung-tae-lee-jung-hee-cheon, Accelerating ID-based encryption based on trapdoor DL using pre-computation. Cryptology ePrint Archive, Report, vol.187, 2011.

T. Iijima, F. Momose, and J. Chao, A classification of elliptic curves with respect to the GHS attack in odd characteristic Cryptology ePrint Archive, p.805, 2015.

J. Kim, R. Montenegro, Y. P. Tetali, and P. , A birthday paradox for Markov chains, with an optimal bound for collision in the Pollard rho algorithm for discrete logarithm, The Annals of Applied Probability, vol.20, issue.2, pp.295-521, 2010.

J. Jr, M. J. Koblitz, N. Silverman, J. H. Stein, A. Teske et al., Analysis of the Xedni calculus attack, Des. Codes Crypt, vol.20, issue.1, pp.41-64, 2000.

D. Jao, S. D. Miller, and R. Venkatesan, Do All Elliptic Curves of the Same Order Have the Same Difficulty of Discrete Log?, ASIACRYPT 2005, pp.21-40, 2005.
DOI : 10.1007/11593447_2

A. Joux, Algorithmic cryptanalysis, Chapman & Hall/CRC, 2009.

A. Joux, R. Lercier, D. Naccache, and E. Thomé, Oracle-Assisted Static Diffie-Hellman Is Easier Than Discrete Logarithms, Cryptography and Coding, 12th IMA International Conference, pp.351-367, 2009.
DOI : 10.1007/978-3-642-10868-6_21

URL : https://hal.archives-ouvertes.fr/inria-00337753

A. Joux and V. Vitse, Cover and decomposition index calculus on elliptic curves made practical ? Application to a previously unreachable curve over F p 6, Advances in Cryptology ? EUROCRYPT 2012, pp.9-26, 2012.

A. Joux and V. Vitse, Elliptic Curve Discrete Logarithm Problem over Small Degree Extension Fields, Journal of Cryptology, vol.12, issue.3, pp.119-143, 2013.
DOI : 10.1007/s00145-011-9116-z

K. Karabina, Point decomposition problem in binary elliptic curves. Cryptology ePrint Archive, Report, vol.2015, p.319, 2015.

S. Kijima and R. Montenegro, Collision of Random Walks and a Refined Analysis of Attacks on the Discrete Logarithm Problem, PKC 2015, pp.127-149, 2015.
DOI : 10.1007/978-3-662-46447-2_6

J. H. Kim, R. Montenegro, and P. Tetali, Near Optimal Bounds for Collision in Pollard Rho for Discrete Log, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07), pp.215-223, 2007.
DOI : 10.1109/FOCS.2007.38

M. Kim, J. H. Cheon, and I. S. Lee, Analysis on a generalized algorithm for the strong discrete logarithm problem with auxiliary inputs, Mathematics of Computation, vol.83, issue.288, pp.1993-2004, 2014.
DOI : 10.1090/S0025-5718-2014-02813-5

T. Kim and J. H. Cheon, A new approach to the discrete logarithm problem with auxiliary inputs. Cryptology ePrint Archive, p.609, 2012.

N. Koblitz and A. Menezes, Another look at non-standard discrete log and Diffie-Hellman problems, Journal of Mathematical Cryptology, vol.2, issue.4, pp.311-326, 2008.
DOI : 10.1515/JMC.2008.014

N. Koblitz and A. Menezes, Intractable problems in cryptography, Contemporary Mathematics, vol.518, pp.279-300, 2010.
DOI : 10.1090/conm/518/10212

D. R. Kohel and I. E. Shparlinski, On Exponential Sums and Group Generators for Elliptic Curves over Finite Fields, ANTS IV, pp.395-404, 2000.
DOI : 10.1007/10722028_24

M. Kosters, Deterministically generating Picard groups of hyperelliptic curves over finite fields (2014) ArXiv preprint 1402, p.6579

M. Kosters and S. L. Yeo, ArXiv preprint 1503, Notes on summation polynomials, p.8001, 2015.

S. Kozaki, T. Kutsuma, and K. Matsuo, Remarks on Cheon's algorithms for pairingrelated problems, Pairing 2007, pp.302-316, 2007.

F. Kuhn and R. Struik, Random Walks Revisited: Extensions of Pollard???s Rho Algorithm for Computing Multiple Discrete Logarithms, SAC 2001, pp.212-229, 2001.
DOI : 10.1007/3-540-45537-X_17

M. Massierer, Some experiments investigating a possible L(1/4) algorithm for the discrete logarithm problem in algebraic curves Cryptology ePrint Archive, p.996, 2014.

A. May and I. Ozerov, A Generic Algorithm for Small Weight Discrete Logarithms in Composite Groups, SAC 2014, pp.278-289, 2014.
DOI : 10.1007/978-3-319-13051-4_17

A. Menezes and M. Qu, Analysis of the Weil Descent Attack of Gaudry, Hess and Smart, CT-RSA 2001, pp.308-318
DOI : 10.1007/3-540-45353-9_23

F. Momose and J. Chao, Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics, J. Ramanujan Mathematical Society, vol.28, issue.3, pp.299-357, 2013.

R. Montenegro and P. Tetali, How long does it take to catch a wild kangaroo?, Proceedings of the 41st annual ACM symposium on Symposium on theory of computing, STOC '09, pp.553-559, 2009.
DOI : 10.1145/1536414.1536490

K. I. Nagao, Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension Field, ANTS-IX: Algorithmic Number Theory, pp.285-300, 2010.
DOI : 10.1007/978-3-642-14518-6_23

K. I. Nagao, Decomposition formula of the Jacobian group of plane curve (2013) Cryptology ePrint Archive, p.548

V. I. Nechaev, Complexity of a determinate algorithm for the discrete logarithm, Mathematical Notes, vol.30, issue.2, pp.165-172, 1994.
DOI : 10.1007/BF02113297

K. Nguyen, Explicit arithmetic of Brauer groups, ray class fields and index calculus, 2001.

P. Oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic Applications, Journal of Cryptology, vol.12, issue.1, pp.1-28, 1999.
DOI : 10.1007/PL00003816

C. Petit and J. J. Quisquater, On Polynomial Systems Arising from a Weil Descent, ASIACRYPT 2012, pp.451-466
DOI : 10.1007/978-3-642-34961-4_28

J. M. Pollard, Kangaroos, Monopoly and Discrete Logarithms, Journal of Cryptology, vol.13, issue.4, pp.437-447, 2000.
DOI : 10.1007/s001450010010

C. Pomerance, Fast, Rigorous Factorization and Discrete Logarithm Algorithms, Discrete Algorithms and Complexity, Proceedings of the Japan?US Joint Seminar, pp.119-143, 1986.
DOI : 10.1016/B978-0-12-386870-1.50014-9

Y. Sakemi, G. Hanaoka, T. Izu, M. Takenaka, and M. Yasuda, Solving a Discrete Logarithm Problem with Auxiliary Input on a 160-Bit Elliptic Curve, PKC 2012, pp.595-608
DOI : 10.1007/978-3-642-30057-8_35

P. Sarkar and S. Singh, A simple method for obtaining relations among factor basis elements for special hyperelliptic curves (2015) Cryptology ePrint Archive, p.179

T. Satoh, On generalization of Cheon's algorithm. Cryptology ePrint Archive, Report, p.58, 2009.

I. Semaev, New algorithm for the discrete logarithm problem on elliptic curves. Cryptology ePrint Archive, Report, vol.2015, p.310, 2015.

I. A. Semaev, Summation polynomials and the discrete logarithm problem on elliptic curves. Cryptology ePrint Archive, Report, p.31, 2004.

M. Shantz and E. Teske, Solving the elliptic curve discrete logarithm problem using Semaev polynomials, Weil descent and Gröbner basis methods ? an experimental study, Number Theory and Cryptography, pp.94-107

V. Shoup, Lower Bounds for Discrete Logarithms and Related Problems, EUROCRYPT 1997, pp.256-266, 1997.
DOI : 10.1007/3-540-69053-0_18

I. E. Shparlinski and J. F. Voloch, Generators of elliptic curves over finite fields, Bull. Inst. Math. Acad. Sinica, vol.9, issue.4, pp.657-670, 2014.

N. Thériault, Index Calculus Attack for Hyperelliptic Curves of Small Genus, ASIACRYPT 2003, pp.75-92, 2003.
DOI : 10.1007/978-3-540-40061-5_5

N. Thériault, Weil descent attack for Kummer extentions, J. Ramanujan Mathematical Society, vol.18, issue.3, pp.281-312, 2003.

V. Vitse, Summation polynomials and symmetries for the ECDLP over extension fields. Talk given at the DLP, 2014.

L. C. Washington, Elliptic Curves: Number Theory and Cryptography, 2008.
DOI : 10.1201/9781420071474

E. Wenger and P. Wolfger, Solving the Discrete Logarithm of a 113-Bit Koblitz Curve with an FPGA Cluster, SAC 2014, pp.363-379, 2014.
DOI : 10.1007/978-3-319-13051-4_22

E. Wenger and P. Wolfger, Harder, better, faster, stronger ? elliptic curve discrete logarithm computations on FPGAs. Cryptology ePrint Archive, p.143, 2015.

M. J. Wiener and R. J. Zuccherato, Faster Attacks on Elliptic Curve Cryptosystems, SAC 1998, pp.190-200, 1998.
DOI : 10.1007/3-540-48892-8_15

A. Yun, Generic Hardness of the Multiple Discrete Logarithm Problem, EUROCRYPT 2015, pp.817-836
DOI : 10.1007/978-3-662-46803-6_27

F. Zhang and P. Wang, Speeding up elliptic curve discrete logarithm computations with point halving, Designs, Codes and Cryptography, vol.12, issue.234, pp.197-208, 2013.
DOI : 10.1007/s10623-011-9599-5