S. Benzekry, G. Chapuisat, J. Ciccolini, A. Erlinger, and F. Hubert, A new mathematical model for optimizing the combination between antiangiogenic and cytotoxic drugs in oncology, Comptes Rendus Mathematique, vol.350, issue.1-2, p.2328, 2012.
DOI : 10.1016/j.crma.2011.11.019

URL : https://hal.archives-ouvertes.fr/hal-00641476

S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. Ebos et al., Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth, PLoS Computational Biology, vol.90, issue.8, p.10, 2014.
DOI : 10.1371/journal.pcbi.1003800.s010

R. Cukier, H. Levine, and K. Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of Computational Physics, vol.26, p.142, 1978.

J. Folkman, Tumor angiogenesis : Therapeutic implications, N Engl J Med, 1971.

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling : A dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer Research, 1999.

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy : A new paradigm for combination therapy, Nature Medicine, vol.7, issue.9, p.987989, 2001.

L. Norton, A gompertzian model of human breast cancer growth, Cancer Research, vol.48, issue.24, p.70677071, 1988.

J. Poleszczuk, P. Hahnfeldt, and H. Enderling, Therapeutic Implications from Sensitivity Analysis of Tumor Angiogenesis Models, PLOS ONE, vol.41, issue.3, 2015.
DOI : 10.1371/journal.pone.0120007.t002

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto et al., Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index, Computer Physics Communications, vol.181, issue.2, p.259270, 2010.
DOI : 10.1016/j.cpc.2009.09.018

I. Sobol, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, vol.55, issue.1-3, p.271280, 2001.
DOI : 10.1016/S0378-4754(00)00270-6