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Dynamic Hybrid Algorithms for MAP Inference in
Discrete MRFs

Karteek Alahari, Student Member, IEEE, Pushmeet Kohli, Member, IEEE, and Philip H. S. Torr, Senior
Member, IEEE

Abstract—In this paper, we present novel techniques that improve the computational and memory efficiency of algorithms for solving
multi-label energy functions arising from discrete MRFs or CRFs. These methods are motivated by the observations that the performance
of minimization algorithms depends on: (a) the initialization used for the primal and dual variables; and (b) the number of primal variables
involved in the energy function. Our first method (dynamic α-expansion) works by ‘recycling’ results from previous problem instances.
The second method simplifies the energy function by ‘reducing’ the number of unknown variables present in the problem. Further, we
show that it can also be used to generate a good initialization for the dynamic α-expansion algorithm by ‘reusing’ dual variables.
We test the performance of our methods on energy functions encountered in the problems of stereo matching, and colour and
object based segmentation. Experimental results show that our methods achieve a substantial improvement in the performance
of α-expansion, as well as other popular algorithms such as sequential tree-reweighted message passing, and max-product belief
propagation. We also demonstrate the applicability of our schemes for certain higher order energy functions, such as the one described
in [1], for interactive texture based image and video segmentation. In most cases we achieve a 10-15 times speed-up in the computation
time. Our modified α-expansion algorithm provides similar performance to Fast-PD [2], but is conceptually much simpler. Both α-
expansion and Fast-PD can be made orders of magnitude faster when used in conjunction with the ‘reduce’ scheme proposed in this
paper.

Index Terms—Markov Random Fields, Multi-label Problems, Energy Minimization, Approximate Algorithms.

✦

1 INTRODUCTION

MANY problems in computer vision such as image
segmentation, stereo matching, image restoration,

and panoramic stitching involve inferring the maximum
a posteriori (MAP) solution of a probability distribution
defined by a discrete MRF or CRF [3], [4], [5], [6]. The MAP

solution can be found by minimizing an energy or cost
function. In the last few years, driven by its applicability,
energy minimization has become a very active area
of research [6]. Although, minimizing a general MRF

energy function is an NP-hard problem [3], there exist a
number of powerful algorithms which compute the exact
solution for a particular family of energy functions in
polynomial time. For instance, max-product (min-sum)
belief propagation exactly minimizes energy functions
defined over graphs with no loops [7]. Similarly, certain
submodular energy functions can be minimized by solv-
ing an st-mincut problem [8], [9], [10], [11].
Efficient algorithms have also been proposed for func-

tions which do not fall under the above classes [3],
[12], [13]. Expansion and swap move making algorithms,
sequential tree-reweighted message passing, and belief
propagation are examples of popular methods for solv-
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ing these functions. They have been shown to give excel-
lent results on discrete MRFs typically used in computer
vision [3], [6]. However, these algorithms can take a
considerable amount of time to solve problems which
involve a large number of variables. As computer vision
moves towards the era of large videos and gigapixel im-
ages, computational efficiency is becoming increasingly
important. Indeed, the last few years have seen a lot of
attention being devoted to increasing the performance of
minimization algorithms [2], [14], [15], [16].
We make two contributions to improve the efficiency

of energy minimization algorithms. Our first contri-
bution is a method which works by reusing results
from previous problem instances, providing a simpler
alternative to the recent work of [2] on dynamic en-
ergy minimization. Our second contribution is a method
which simplifies the energy minimization problem by
reducing the number of variables in the energy function.
Further, it can also be used to speed-up the inference
of the optimal values of the remaining variables. We
also demonstrate the applicability of these methods for
certain higher order energy functions [1].

Recycling Solutions: Our first method is inspired
by the dynamic computation paradigm [2], [15], [16]. It
improves the performance of the α-expansion algorithm
by reusing results from previous problem instances. The
idea of dynamic computation has been used in the recent
work of [15], [16] on minimizing submodular energy
functions. In particular, [16] showed how flow can be
reused in maxflow algorithms, and [15] showed how
cuts (or previous labelling) can be reused. However,
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these methods are only applicable for the special case
of dynamic MRFs1 that are characterized by submodular
energy functions. Our work extends these methods to
non-submodular multi-label energy functions. It is most
similar to the interesting Fast-PD algorithm proposed
by Komodakis et al. [2], which generalizes the work
of [17] and [16]. Fast-PD works by solving the energy
minimization problem by a series of graph cut compu-
tations. This process is made efficient by reusing the
primal and dual solutions of the linear programming
(LP) relaxation of the energy minimization problem,
achieving a substantial improvement in the running
time. Our modified dynamic α-expansion algorithm is
conceptually much simpler and easier to implement than
Fast-PD whilst giving similar performance. Our method
of initializing the α-expansion algorithm can make both
methods orders of magnitude faster.

Simplifying energy functions: Most energy mini-
mization problems encountered while solving computer
vision problems are composed of easy and difficult com-
ponents [18], [19]. For instance, the variables labelled by
the QPBO algorithm [18], [20] constitute the easy compo-
nent, while the rest constitute the difficult component.
The globally optimal labels for variables constituting
the easy component of the MRF energy function can be
found in a few iterations of the minimization algorithm,
while those of the difficult part typically cannot be
found in polynomial time (in the number of variables).
Energy minimization algorithms generally do not take
advantage of this decomposition, and process all the
random variables at every iteration.
We propose a novel strategy which solves a given

discrete MRF in two phases. In the first phase a partially
optimal solution of the energy function is computed [18],
[19], [20]. In such solutions, not all variables are assigned
a label. However, the set of variables which are assigned
a label, are guaranteed to take the same labelling in at
least one of the optimal solutions of the energy function.
This is referred to as the property of partial optimality.
Using the partial solutions to fix values of these variables
results in a projection (cf. section 2) of the original energy
function [11]. In the second phase we minimize this
simplified energy which depends on fewer variables,
and is easier and faster to minimize compared to the
original energy function. This approach is applicable to
many popular energy minimization approaches such as
α-expansion, BP, Fast-PD and TRW-S. We also show how
to achieve a substantial speed-up in the minimization of
the simplified energy by reusing results from computa-
tions performed to find the partially optimal solution.

Outline of the Paper: In section 2, we provide
the notation used in the paper and review the basics
of energy minimization and submodular functions. Al-
gorithms for approximate energy minimization [3], [12]
and computing partially optimal solutions [19], [20] are
briefly described in the same section. Section 3 presents

1. MRFs that vary over time [15], [16].

our two methods to improve the running time of al-
gorithms for minimizing multi-label energy functions.
Specifically, it describes methods to: (a) recycle the pri-
mal and dual solutions to obtain a good initialization
for the new problem instance, and (b) reduce energy
functions and reuse the resulting residual graphs. Sec-
tion 4 shows the applicability of our methods for certain
higher order energy functions, such as those containing
the Pn model potentials proposed by Kohli et al. [1], for
interactive texture based image and video segmentation.
We also present a scheme to compute partially optimal
solutions for this model. In section 5, we evaluate the
performance of our methods on the problems of colour
and object based segmentation [21], [22], and stereo
matching [6]. A few examples of these problems are
shown in Fig. 1. Summary and discussion are provided
in section 6.

2 PRELIMINARIES

The notation and basic definitions relevant to our work
are provided here. Consider a set of random variables
X = {X1, X2, . . . , Xn}, where each variableXi ∈ X takes
a value from the label set L = {l1, l2, . . . , lk}. A labelling
x refers to any possible assignment of labels to the
random variables and takes values from the set Ln.
The label set corresponds to disparities in the case of
stereo matching problem, and segments in the case of
the segmentation problem.
An energy function E : Ln → R maps any labelling

x ∈ Ln to a real number E(x) called its energy or
cost. Energy functions are the negative logarithm of
the posterior probability distribution of the labelling.
Maximizing the posterior probability is equivalent to
minimizing the energy function and leads to the MAP

solution, which is defined as xmap = argminx∈LE(x).
Energy functions typically used in computer vision

can be decomposed into a sum over unary (φi) and
pairwise (φij) potential functions as:

E(x) =
∑

i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj), (1)

where V is the set of all random variables and E is the set
of all pairs of interacting variables. The unary potential
φi(xi) represents the cost of the assignment: Xi = xi,
while the pairwise potential φij(xi, xj) represents that
of the assignment: Xi = xi and Xj = xj .
Limiting the energy functions to pairwise potentials

severely restricts the representational power of these
models. Researchers have recognized this fact and have
used higher order models to improve the expressive
power of MRFs and CRFs [1], [23], [24], [25]. Efficient
methods to solve a certain class of higher order potential
functions have also been presented [1], [26]. Given a
neighbourhood system N , a clique c is specified by a set
of random variables Xc such that ∀i, j ∈ c, i ∈ Nj and
j ∈ Ni, where Ni and Nj are the sets of all neighbours



3

1. Cow 2. Cow 3. Garden 4. Tsukuba 5. Venus 6. Cones

(a)

(b)

7. Cones 8. Plane 9. Bikes 10. Road 11. Building 12. Car

(c)

(d)

Fig. 1. Some of the images (a,c) and their ground truth labellings (b, d) used in our experiments. 1-3 Colour-based segmentation
problems with 3, 4, 4 labels respectively. 4-7 Stereo matching problems with 16, 20, 60, 60 labels respectively. 8-12 Object-based
segmentation problems with 4, 5, 5, 7, 8 labels respectively. (This figure is best viewed in colour.)

of variable Xi and Xj respectively. We denote the higher
order potential energy functions as:

Eh(x) =
∑

c∈C

φc(xc). (2)

The term φc(xc) is known as the potential function of the
clique c, where xc = {xi, i ∈ c}. Note that restricting the
clique size in equation (2) to at most 2 produces energy
functions of the form (1).

Energy Projection: A projection of any function
f(.) is a function fp obtained by fixing the values of
some of the arguments of f(.). For instance, fixing the
value of the first t variables of the energy function
E(x1, x2, . . . , xn) : Ln → R produces the projection
Ep(xt+1, xt+2, . . . , xn) : Ln−t → R.

Energy Reparameterization: Energy functions E1

and E2 are called reparameterizations of each other if and
only if ∀x, E1(x) = E2(x) [12], [20]. Note that this simply
means that all possible labellings x have the same energy
under both functions E1 and E2, and does not imply that
E1 and E2 are composed of the same potential functions.

Submodular Functions: Submodular functions are
discrete analogues of convex functions. They are par-
ticularly important because they can be minimized in
polynomial time [20], [27]. Given an ordering over the
label set L, a function f(.) is submodular if all its
projections on two variables satisfy the constraint:

fp(a, b)+ fp(a+1, b+1) ≤ fp(a, b+1)+ fp(a+1, b), (3)

for all a, b ∈ L. Kolmogorov and Zabih [11] showed
that all submodular functions of binary variables which
can be decomposed into potential functions with at most
three variables as arguments can be minimized exactly

by solving an st-mincut problem. Later, Ishikawa [10],
Zalesky [28], Schlesinger and Flach [29] provided solu-
tions for the multi-label case.
Most multi-label energy functions encountered in

computer vision do not satisfy the constraint (3) and thus
are not submodular. For instance, it can be clearly seen
that the Potts model potential ψ defined as:

ψij(xi, xj) =

{
0 if xi = xj ,
γ otherwise,

(4)

does not satisfy the constraint (3). For example, choosing
a = k and b = k + 1 in (3) violates the constraint.
A number of algorithms have been proposed to ef-

ficiently find approximate or partially optimal solutions
of these energy functions [3], [13], [18], [19], [20]. Our
techniques to improve the computational efficiency are
based on these algorithms.

2.1 Approximate Energy Minimization

We now give a brief summary of popular and commonly
used algorithms for approximate energy minimization.

2.1.1 Move making algorithms
The α-expansion and αβ-swap algorithms are widely
used for approximate energy minimization [3], [6]. These
algorithms work by starting from an initial labelling x

and making a series of moves (label changes) which
lower the energy iteratively. Convergence is achieved
when the energy cannot be decreased further. An opti-
mal move (one that decreases the energy of the labelling
by the most amount) is made at every step.
An α-expansion move allows a random variable to

either retain its current label or take a label α. One iter-
ation of the algorithm involves performing expansions
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for all α ∈ L in some order successively. Boykov et al.
[3] showed that the optimal expansion moves for energy
functions of the form (1) can be computed in polynomial
time by solving an st-mincut problem if the pairwise
potential functions φij define a metric.
An αβ-swap move allows a random variable whose

current label is α or β to either take a label α or β.
One iteration of the algorithm involves performing swap
moves for all pairs of labels α, β ∈ L in some order
successively. Optimal swap moves for energy functions
of the form (1) can be computed in polynomial time if
φij defines a semi-metric [3].

2.1.2 Message passing algorithms
These algorithms work by passing messages between
nodes representing the different random variables of the
model. Max-product belief propagation (BP) is a popular
and well-known message passing algorithm for MAP

inference [30]. It is guaranteed to produce the exact
solution on graphs of tree topology. However, on loopy
graphs it is not guaranteed to converge.
Wainwright et al. [13] proposed a new message pass-

ing algorithm called tree-reweighted message passing
(TRW) which worked by solving the dual problem of
maximizing a lower bound on the energy. However, their
algorithm was not guaranteed to increase this bound in
successive iterations, and also lacked convergence guar-
antees. Kolmogorov [12] developed a modification of
this algorithm called sequential tree-reweighted message
passing (TRW-S) with the property that the lower bound
is guaranteed not to decrease. Other variants of message
passing algorithms have also been proposed [31], [32],
[33].

2.2 Computing Partially Optimal Solutions

Some algorithms for minimization of non-submodular
functions return a partial solution x ∈ (L ∪ {ǫ})n of the
energy. We define the assignment xi = ǫ to imply that
no label has been assigned to random variable Xi. For
instance, the QPBO algorithm [18], [20] for minimizing
energy functions of binary variables returns a partially
labelled solution x with the following property: that
there exists a global minimum x∗ of the energy function
such that xp = x∗p for all variablesXp that are labelled, i.e.
xp 6= ǫ. This property of a partial solution is called
weak persistency. There are certain partial solutions of
the energy for which a stronger condition called strong
persistency holds true. This property states that if a
variable Xp is labelled, then it is assigned the same
label in all global minima x∗ of the energy, i.e. xp = x∗p
for all x∗ ∈ {argminxE(x)}. The QPBO algorithm was
extended to the multi-label case in [34] by converting
the multi-label problem to a binary one. However, this
approach is computationally expensive and defeats our
aim of achieving fast energy minimization.
Another method for finding partially optimal solu-

tions of multi-label energy functions was recently pro-
posed by [19]. The key step of this algorithm is the

construction of a submodular subproblem Pk for each
label lk ∈ L.

3 EFFICIENT ENERGY MINIMIZATION

We now present methods to improve the performance of
algorithms for minimizing multi-label MRFs. For brevity,
we explain the working of these techniques in the
context of the α-expansion algorithm. However, our
methods are general and are applicable to all popular
algorithms such as αβ-swap, BP, Fast-PD and TRW-S
(sequential TRW). Experimental results using all these
algorithms are presented in the latter sections. We also
limit our discussion to energy functions with unary and
pairwise terms in this section. Methods for higher order
terms are presented in Section 4.
The techniques proposed in this paper are inspired

from the observations that the computation time of en-
ergy minimization algorithms primarily depends on (a)
the initialization used, and (b) the number of variables
involved in the energy function. Thus, our primary goals
are:

1) To generate a good initialization for the current
problem instance which results in a reduction in
the amount of computation required for solving the
problem.

2) To reduce the number of variables involved in the
energy function in an efficient manner.

3.1 Recycling Primal and Dual Solutions

We achieve our first goal of obtaining a good initializa-
tion by reusing results from previous problem instances.
We now explain the dynamic α-expansion algorithm. As
discussed earlier, the α-expansion algorithm works by
making a series of changes to the current solution to
decrease its energy. In one iteration of the algorithm, it
computes moves with respect to every label ‘α’ (∈ L).
It finds the optimal changes (or move) to be made by
minimizing a binary energy function using the st-mincut
algorithm. The binary energy function corresponding to
a particular ‘α’ move will be denoted by Eα(xα). It is
defined as:

Eα(xα) =
∑

i∈V

φα
i (xα

i ) +
∑

(i,j)∈E

φα
ij(x

α
i , x

α
j ), (5)

where xα
i , x

α
j ∈ {0, 1}. The unary potential φα

i (xα
i ) is

given by:

φα
i (xα

i ) =

{
φi(xi = α) if xα

i = 0,
φi(xi = xcuri ) if xα

i = 1,
(6)

where xcuri is the current label assignment for Xi. The
pairwise potentials, for the Potts model in (4), are de-
fined as:

φα
ij(x

α
i , x

α
j ) =






0 if xα
i = 0, xα

j = 0,
γ(1− δ(xcuri − x

cur
j )) if xα

i = 1, xα
j = 1,

γ otherwise,
(7)
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where δ(xcuri − x
cur
j ) = 1, if xcuri = xcurj , and 0 otherwise.

The above function is pairwise and submodular, if the
energy is metric [3]. The problem of minimizing any such
function is equivalent to finding the st-mincut in a par-
ticular graph. The st-mincut is found by solving the dual
problem of maxflow on the same graph. Thus, the primal
solution of the above defined problem corresponds to
the labels assigned to each variable xα

i , while the dual
solution corresponds to the feasible flow solution of the
maxflow problem. Note that each α-expansion move
requires a different graph.

Reusing Flow across Iterations: When solving an
expansion move in a particular iteration, we reuse the
flow from the corresponding move in the previous
iteration to make the new computation faster. In the
first iteration of the algorithm, we build one graph
G1

i , i = 1, . . . , k, for each label expansion. The optimal
expansion move for a given label li is computed by
solving the st-mincut/maxflow problem on the graph
G1

i . Maxflow problems corresponding to all the labels
are solved just as in standard α-expansion. In iterations
u > 1 of the algorithm, instead of creating a new graph
Gu

i for a label expansion, we reuse the corresponding
graph Gu−1

i from the previous iteration exploiting the
fact that the two graphs are similar. We use dynamic
graph cuts proposed by Kohli and Torr [16] to achieve
this. Given the solution of the maxflow problem on a
graph, their method efficiently computes the maxflow in
a modified version of the graph. Intuitively, the solution
of the graph Gu−1

i is a good initialization for that of the
graph Gu

i . The dynamic update step involves updating
the flows and the residual edge capacities. After these
update operations, the maxflow algorithm is performed
on the residual graph. As the number of changes in
the graphs decrease in the latter iterations, the number
of update and maxflow computations decrease. Hence,
the optimal moves in these iterations are computed
efficiently.

For large problems, i.e. when the number of labels,
k, or the number of pixels, n, is very large, main-
taining multiple dual solutions may not be viable due
to memory requirements. This issue can be overcome
by working with a projected energy function obtained
from a partially optimal solution (cf. section 3.2). Thus
our method is not only time-efficient but also memory-
efficient if the projected energy function involves a small
subset of random variables. The recycle scheme for
single MRFs is summarized as follows:

1) Construct graphs G1
i , i = 1, . . . , k, in the first itera-

tion.
2) Compute the maxflow solutions to get the optimal

moves.
3) For iterations u > 1,

• Update graphs from iteration u− 1.
• Compute the new maxflow solutions for the

residual graphs.

Efficiently Solving Dynamic MRFs: For Dynamic
MRFs [16], the task is to solve a problem where the
data changes from one problem instance to the next. For
instance, this occurs when solving a labelling problem on
the image frames of a video sequence. The conventional
method to solve such a problem is to use the standard
α-expansion algorithm on each problem instance (e.g.
each time instance) independently. This method is in-
efficient and would require a lot of computation time.
Our method works by using both the primal and dual
solutions. The primal solution is generated by reusing
the labelling of the previous problem instance. Intu-
itively, if the data changes minimally from one problem
instance to the next, the solution of a particular problem
instance provides a good initialization for the subsequent
instance.
Consider a labelling problem defined on a video se-

quence. The first frame in the video sequence is la-
belled using the single MRF method described above.
The primal and dual solutions thus obtained are used
to initialize the maxflow/st-mincut problems for the
next frame. The labelling (primal solution) of a frame
t is initialized with the solution obtained for frame
t−1. The graphs G1

i (t), i = 1, . . . , k, corresponding to the
first iteration for frame t are obtained by dynamically
updating [16] the graphs from the last iteration for frame
t − 1. With these initializations the maxflow problem
for each label is solved as in the single MRF case. In
summary,

1) Solve frame 1 as a ‘single MRF’.
2) For all frames t > 1,

• Initialize the labelling (primal) using the solu-
tion of frame t− 1.

• Initialize the graph flow (dual) from the corre-
sponding solutions for frame t− 1.

• Solve as a ‘single MRF’.

These techniques for α-expansion provide similar speed-
ups as the Fast-PD algorithm as shown in Section 5.1.

3.2 Reducing Energy Functions

We now propose a method to simplify (reduce the
number of unknown variables in) the MRF by solving the
easy part. Our reduce strategy is applicable to popular
energy minimization approaches such as α-expansion,
BP, Fast-PD and TRW-S (see section 5). We also show
how computations performed during this procedure can
be used to efficiently initialize the dynamic α-expansion
algorithm described in the previous section.
As discussed earlier, there are two main algorithms for

obtaining partially optimal solutions of non-submodular
multi-label energy functions. It would be interesting to
compare these partially optimal solution algorithms for
the segmentation and stereo problems, but is beyond
the scope of this paper. We chose to use the algorithm
proposed by Kovtun [19] because of its efficiency. The
key step of this algorithm is the construction of k aux-
iliary problems Pm, one for each label lm ∈ L. Kovtun
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Fig. 2. Pseudo-code for computing the partially optimal
solution of an energy function. An auxiliary problem Pj

for each label lj is formulated as an st-mincut problem. The
solution computed is used to project the energy function E by
fixing the values of the labelled variables. After the iteration
terminates we obtain a new energy function, Ep, comprising
of all the unlabelled variables.

Input: X, L = {l1, . . . , lk}, E
Output: Partially optimal solution
sj : Set of variables taking label lj in the partially
optimal solution

Ep ← E

for j ← 1 to k do
Pj ← Auxiliary problem for label lj
sj ← Solve(Ep, Pj) (cf. §3.2)
Ep ← Project(Ep, sj)

end for

showed that the solution of problem Pm could be used
to find variables that have the persistency property (as
described in §2.2). Thus, by solving all subproblems
Pm, ∀lm ∈ L, a partial solution which satisfies strong
persistency can be obtained.
Specifically, problem Pm is the minimization of the

following binary energy function

Em(xm) =
∑

i∈V

φm
i (xm

i ) +
∑

(i,j)∈E

φm
ij (xm

i , x
m
j ), (8)

where xm
i , x

m
j ∈ {0, 1}. The unary potential φm

i (xm
i ) is

given by:

φm
i (xm

i ) =

{
φi(xi = lm) if xm

i = 0,
φi(xi = lmin

i ) if xm
i = 1,

(9)

where lmin
i = argminl∈L−{lm} φi(xi = l). For the case of

Potts model, the pairwise potentials are defined as2:

φm
ij (xm

i , x
m
j ) =






0 if xm
i = 0, xm

j = 0,
0 if xm

i = 1, xm
j = 1,

γ otherwise.
(10)

Em(xm) defines a submodular energy function and can
be minimized by solving an st-mincut problem. Let xm∗

denote the optimal solution of the subproblem Pm. We
extract a partially optimal solution x ∈ (L∪ {ǫ})n of the
multi-label function E(x) as:

xi =

{
lm if xm

i = 0,
ǫ otherwise.

(11)

We repeat this process for all the labels lm ∈ L, and
merge the solutions to obtain the final partially optimal
solution of the original energy function E(x).

2. Although the algorithm proposed in [19] only handles Potts model
energies, it can be easily extended to general energy functions [35].

To make this procedure computationally efficient, we
project the energy function after every subproblem com-
putation. This involves fixing values of all variables
whose optimal labels have already been extracted from
the solution of previous subproblem Pm. This reduces
the number of unknown variables in the multi-label
energy function and makes the computation of sub-
sequent auxiliary problems faster. We summarize this
approach in Fig. 2. Our hope is that after solving all
auxiliary problems, we would be left with a projec-
tion of the original energy function which involves far
fewer variables compared to the original function E(x).
The experiments described in the next section on MRFs
commonly encountered in computer vision confirm this
behaviour.
The energy function projection obtained from the

procedure described above corresponds to the difficult
component of the energy function. It depends on the
variables whose optimal labels were not found. The
original problem is now reduced to finding the labels of
these variables. This can be done using any algorithm
for approximate energy minimization. Results of this
method are shown in Table 2. Next, we show how this
process can be made efficient by reusing the solutions
of subproblems solved during the partial optimality
algorithm. Again, we will describe our technique using
the α-expansion algorithm.

Reusing solutions from the partial optimality al-
gorithm: Next we explain how to achieve computa-
tional efficiency for solving the difficult part of the MRF.
From (5) and (8), it can be seen that the energy func-
tions corresponding to the subproblems of the partial
optimality and α-expansion algorithms have the same
form. Thus we can reuse the solutions of the partial
optimality subproblems to make the computation of the
α-expansion moves faster. Specifically, we use the dual
(flow) solutions of the partial optimality problems to
generate an initialization for the expansion moves of the
first iteration of the α-expansion algorithm (in a manner
similar to that described in the previous section).
The speed-up obtained depends on the similarity

of the two problems [2], [16]. Thus, by making the
subproblems of the partial optimality and α-expansion
algorithms similar, we can improve the running time. We
note that for unassigned labels we have some choice as
to their initialization, and a natural question arises as to
whether any particular initialization is better. Consider
the expansion and partial optimality subproblems with
respect to a label α ∈ L, i.e. lm = α in (9). From (6) and
(9) it can be seen that the unary potentials of the partial
optimality and α-expansion subproblems are identical
if the current label assignment for Xi, x

cur
i = lmin

i .
This can be done by initializing the labelling for the
α-expansion algorithm by initializing xi = lmin

i , where
lmin
i = arg minl∈L φ(xi = l). The pairwise potentials may
differ at most by the constant γ for the case xα

i = 1, xα
j =

1 (cf. (7) and (10)). This change makes the two problems
similar and as shown in the experimental results in Fig. 6
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results in a speed-up in running time.

Our method is summarized as follows:

1) Compute the partially optimal solution and project
the energy function. (Reduce)

2) To label the remaining nodes using α-expansion,

• Initialize the labelling of each node i to lmin
i ,

where lmin
i = argminl∈L φi(xi = l).

• Update the residual graphs from the k auxiliary
problems to construct graphs for the first α-
expansion iteration. (Reuse)

• Restart the maxflow algorithms to compute
optimal moves, using flow recycling between
expansion moves. (Recycle)

4 SOLVING Pn POTTS MODEL EFFICIENTLY

We now consider the problem of minimizing energy
functions which contain clique potentials which take the
form of a Pn Potts model (introduced in [1]). The Pn

Potts model potential for cliques of size n is defined as:

φc(xc) =

{
γk if xi = lk, ∀i ∈ c,
γmax otherwise,

(12)

where γmax > γk, ∀lk ∈ L. These potentials can be solved
using the α-expansion and αβ-swap move making algo-
rithms. The optimal expansion/swap move is computed
by minimizing a binary energy function using the st-
mincut algorithm [1]. We describe our methods in the
context of the α-expansion algorithm. The binary (higher
order) energy function corresponding to a particular ‘α’
move will be denoted by Eα

h (xα). It is defined as:

Eα
h (xα) =

∑

i∈V

φα
i (xα

i ) +
∑

(i,j)∈E

φα
ij(x

α
i , x

α
j ) +

∑

c∈C
|c|>2

φα
c (xα

c ),

(13)
where xα

i , x
α
j ∈ {0, 1}, xα

c = {xα
i , ∀i ∈ c}. The unary

potential φα
i (xα

i ) and the pairwise potential φα
ij(x

α
i , x

α
j )

are given equations (6) and (7) respectively. The clique
potential φα

c (xα
c ) forms a Pn Potts model, and is given

by:

φα
c (xα

c ) =






γα if xα
i = 0, ∀i ∈ c,

γ if xα
i = 1, ∀i ∈ c,

γmax otherwise,
(14)

where γ = γβ if xcuri = β ∈ L, for all i ∈ c, and γ = γmax

otherwise. The move energy function is submodular and
can be represented as an st-mincut graph. The reader is
referred to [1] for details of the graph construction.

Recycling Solutions: Once the st-mincut graph cor-
responding to the higher order move energy is built,
our methods for recycling primal and dual solutions (cf.
§3.1) are directly applicable. When solving an expansion
move in a particular iteration, we reuse the flow from the
corresponding move in the previous iteration to make
the new computation faster.

Computing Partially Optimal Solutions: We now
propose a method to efficiently compute partially opti-
mal solutions of certain higher order energy functions.
As in §3.2, our method is based on the algorithm pro-
posed by Kovtun [19]. An auxiliary problem Pm, for label
lm ∈ L, is the minimization of the following higher order
binary energy function:

Em
h (xm) =

∑

i∈V

φm
i (xm

i )+
∑

(i,j)∈E

φm
ij (xm

i , x
m
j )+

∑

c∈C
|c|>2

φm
c (xm

c ),

(15)
where xm

i , x
m
j ∈ {0, 1}, xm

c = {xm
i , ∀i ∈ c}. The unary

potential φm
i (xm

i ) and the pairwise potential φm
ij (xm

i , x
m
j )

are given by equations (9) and (10) respectively. The Pn

Potts clique potential φm
c (xm

c ) is defined as:

φm
c (xm

c ) =






γm if xm
i = 0, ∀i ∈ c,

min
k∈L,k 6=m

γk if xm
i = 1, ∀i ∈ c,

γmax otherwise.

(16)

It can be easily verified that Em
h (xm) is a submodular

energy function [29]. We now provide the relevant nota-
tion to prove Theorem 1 in [19] for the case of Pn Potts
model.
For every auxiliary problem Pm we consider any

ordering of the label set L = {l1, l2, . . . , lk} such that
label lm is the highest label. This allows us to define a
partial ordering can be defined on the set of label pairs
(a, a′) ∈ L×L. The maximum and minimum for any two
label pairs (a, a′) and (b, b′) are defined as (a, a′)∨(b, b′) =
(a∨b, a′∨b′) and (a, a′)∧(b, b′) = (a∧a′, b∧b′) respectively.
Similarly, the maximum and minimum of any pair of
labellings xc and x′

c is denoted by xc

∨
x′

c and xc

∧
x′

c

respectively. We also define the lowest optimal labelling
x̂m

c as follows:

x̂c =
∧

x∗
c
=arg minxc

E(xc)

x∗
c . (17)

Using this notation, the submodularity condition, in
equation (3), can be written as:

f(xc) + f(x′
c) ≥ f(xc

∨
x′

c) + f(xc

∧
x′

c). (18)

Let ym ∈ Ln denote the partially optimal solution after
solving the auxiliary problem corresponding to label lm
(i.e. Em

h (x)). In other words, the labelling xm
i = 0 is

equivalent to ym
i = lm, and xm

i = 1 to the random
variable Xi retaining the initial label.
Theorem 4.1: An arbitrary solution of the initial prob-

lem x∗ = arg min
x
Eh(x) satisfies the following condition:

x∗
∧

ŷm = ŷm, where ŷm denotes the lowest optimal
labelling for the auxiliary problem.
In other words, this theorem states that the persistency

property holds for our higher order energy function. We
use the following Lemma from [19] to prove the theorem.
Lemma 4.2: Let x̂ be the lowest optimal labelling

for a submodular problem, and x∗ be any arbitrary
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labelling satisfying the condition x∗
∧

x̂ 6= x̂, then
Eh(x∗) > Eh(x∗

∨
x̂)3.

Proof of Theorem 4.1: Our proof is similar to that
given in [19]. Let us assume for any labelling x, x

∧
ŷm 6=

ŷm. From Lemma 4.2 it follows that

Em
h (x

∨
ŷm) < Em

h (x). (19)

The following inequality is obtained from equations (12)
and (16):

φm
c (xc ∨ ŷm

c )− φm
c (xc) ≥ φc(xc ∨ ŷm

c )− φc(xc). (20)

Also, from [19],

φm
ij (xi ∨ ŷm

i , xj ∨ ŷm
j )− φm

ij (xi, xj) ≥

φij(xi ∨ ŷm
i , xj ∨ ŷm

j )− φij(xi, xj). (21)

Using inequalities (19), (20) and (21) it can be easily
shown that,

Eh(x
∨

ŷm) < Eh(x), (22)

which was to be proved.
Thus, the persistency property holds for our higher

order energy function. We extract a partially optimal
solution of the multi-label function Eh(x) using equation
(11). The final partially optimal solution is obtained by
repeating this process for all the labels, and merging the
solutions.

5 EXPERIMENTS

We evaluated our methods on a variety of multi-label
MRF problems such as stereo matching [3], colour [21],
object [22] and texture [1] based segmentation. The de-
tails of the unary and pairwise potentials of the energy
functions used for formulating these problems are given
below.

Colour-based Segmentation: For the colour-based
segmentation problem, we used the energy function de-
fined in [21]. The unary potential functions φi(xi), i ∈ V
are defined using the RGB distributions Ha, a = l1, . . . , lk,

of the k segments as follows:

φi(xi) = − log p(xi = a|Ha), (23)

The distributions Ha are obtained using user specified
constraints. The pairwise potentials encourage contigu-
ous segments while preserving the image edges [21], and
take the form of a Generalized Potts model defined as:

φij(xi, xj) =

{
λ1 + λ2 exp(−g2(i,j)

2σ2 ) 1

dist(i,j)
if xi 6= xj ,

0 if xi = xj ,
(24)

where λ1, λ2 and σ are parameters of the model. The
terms g(i, j) and dist(i, j) give the difference in the
RGB values and the spatial distance respectively between
pixels i and j. We used the following parameter values
for all our experiments with this energy function: λ1 =

3. The lemma can be proved using the submodularity condition in
equation (18) and the definition of lowest optimal labelling. See [19]
for more details.

(a) (b) (c) (d)

Fig. 3. (a) The keyframe of the ‘Dayton’ video sequence
and (b) its segmentation. (c) An image from the MSRC-21
database, and (d) the brush strokes marked by the user. The
keyframe segments and brush strokes are used to learn the
colour histogram models and the patch dictionaries.

5, λ2 = 100 and σ = 5. Segmentation results are shown
on the well-known garden image and a cow image used
in [15], [16].

Stereo Matching: We used the standard energy
function for stereo matching problem [19], [36]. The
unary potentials of the energy are computed using a
fixed size window-based method similar to the one
used in [19]. The pairwise potentials take the form of
a Potts model (4). Stereo matching results are shown
on “Tsukuba”, “Venus”, “Cones”, “Teddy” images from
the Middlebury stereo data set [36]. The Potts model
smoothness cost γ was set to 20 for all our experiments
on this energy function.

Object-based Segmentation: For this problem we
used the energy function defined in [22]. The unary
potentials of this energy are based on shape-texture,
colour, and location. They are learnt using a boosting
procedure with textons and shape filter features. The
pairwise potentials take the form of a contrast sensitive
Potts model (24). The reader is referred to [22] for
more details on the energy function. We evaluated our
algorithms on energy functions corresponding to some
images of the MSRC-21 database.

Texture-based Segmentation: Given a set of distinct
textures, such as texton histograms [37] or a dictionary of
RGB patches, together with their object class labels, the
task is to segment an image. The unary and pairwise
terms are defined as in the object-based segmentation
example. The higher order potential is defined as a func-
tion of the difference between a patch and a dictionary
of np × np RGB patches. In the case of a video sequence
(Dynamic MRF), the patches are computed using one
user segmented keyframe, while user marked strokes are
used in the case of an image (Single MRF). Sample images
are shown in Fig. 3. More details of the potentials can
be found in [1].
The following sections describe the results of primal

and dual, and partially optimal solution initializations.
Standard, publicly available implementations are used
for comparison4. All experiments were performed on a
Intel Core 2 Duo, 2.4 GHz, 3GB RAM machine. Source
code for the proposed methods is available online5.

4. We thank V. Kolmogorov, N. Komodakis and M. Pawan Kumar
for providing the original implementation of their methods for com-
parison.
5. See http://cms.brookes.ac.uk/research/visiongroup
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Fig. 4. Reusing primal and dual solutions for (a), (b) single and (c) dynamic MRF problems: Comparison of run-times of
standard and dynamic versions of α-expansion, and Fast-PD are shown for (a) object-based segmentation problem: ‘Building’
image from the TextonBoost dataset [22], (b) stereo matching problem: Tsukuba (Left image), and (c) colour-based segmentation
problem: cow video sequence [15], [16]. In (a), (b) reusing the dual solution provides a speed-up of at least 4-10 times in
subsequent iterations. In some cases, the first iteration of Fast-PD was slightly slower compared to both versions of α-expansion
algorithm, but the overall computation time was better than ‘standard’ and comparable to ‘dynamic’. For example, times for the
‘Building’ image are: Fast-PD: 0.65s, dynamic: 0.64s, standard: 1.88s. Note that the run-times of Fast-PD and our dynamic
version are very similar in (a) and (b). In (c) the dynamic version reuses primal and dual solutions from the previous frames
in the video sequence and results in 3-4 times speed-up. We also show that the strategy of maintaining only one graph while
recycling solutions (denoted by ‘1 Graph’) provides insignificant speed-up (see text).
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Fig. 5. Comparison of run-times and solution energy of standard and dynamic versions of α-expansion and Fast-PD are shown
for (a) ‘Building’ image, (b) Tsukuba (Left image). Although there is a small change in energy after iteration 1, Standard α-
expansion spends much more time compared to our Dynamic version to obtain a new lower energy solution. The time vs energy
plot for Fast-PD is very similar to dynamic α-expansion, except for iteration 1 in (a), where Fast-PD takes 0.07 seconds more
than our dynamic algorithm.

5.1 Dynamic α-expansion

We now discuss the effect of various primal and dual
solution initializations on the α-expansion algorithm. We
tested a simple of way of using the flow/cut from the
solution of the previous expansion move (i.e. with a
different label) as an initialization for the current move.
From (5) it can be observed that the energy functions cor-
responding to two consecutive moves are substantially
different. Hence, this scheme provides no significant
speed-up. Fig. 4 confirms this expected behaviour.

Fig. 4(a), Fig. 4(b) show the results of the proposed
‘recycle’ strategy for two single MRF examples. The pri-
mal and dual solutions are recycled across iterations (cf.
§3.1). The standard and dynamic versions take the same
time in the first iteration, as no flow is recycled. In the

subsequent iterations, the dynamic version provides a
speed-up of 4-10 times. Similar results were observed for
other problems as well. The approach of initializing both
primal and dual solutions in a dynamic MRF was tested
on the cow video sequence [15], [16]. These run-times
for a sequence of 6 images are shown in Fig. 4(c). Our
initialization method provides a speed-up of 3-4 times in
this case. The graphs also compare the dynamic methods
with Fast-PD [2]. Note that our methods resulted in very
similar run-times compared to Fast-PD. Fig. 5 shows a
comparison of run-time and solution energy for standard
and dynamic versions of α-expansion. From Fig. 4 and
Fig. 5 we see that the speed-up achieved by our dynamic
version is due the fact that small changes in energy can
be computed very efficiently. Table 1 shows the speed-
up obtained for the Pn Potts model. Our method for
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Fig. 6. (a) The percentage of nodes labelled by the partially optimal solution algorithm by varying the smoothness cost for two
energy functions. The Tsukuba stereo matching problem with energy functions given in [19] (Energy 1) and [6] (Energy 2)
is used as the example here. For the smoothness cost γ = 20, only 13% of the nodes are labelled in the case of ‘Energy 2’. (b)
The energy function in [6] (Energy 2) with smoothness cost γ = 20 is used for this experiment on the Tsukuba sequence. The
speed-up obtained by reusing the flows from the partially optimal solution auxiliary problems (Par-opt) for this smoothness
cost is shown. Reusing the flows provides a run-time improvement of at least 5 times in the last two iterations, and more
than 2 times overall improvement. Note that even when the partially optimal solution algorithm fails, we obtain a significant
speed-up.

TABLE 1
Running times (in seconds) for various examples (from [1])

using the Pn Potts model. Results are shown for the
α-expansion algorithm. ‘α-exp’ refers to the times obtained
using the standard alpha expansion algorithm and ‘dyn

α-exp’ refers to the dynamic version (which recycles primal
and dual solutions). ‘opt α-exp’ refers to the optimized
version which computes the partially optimal solution
followed by α-expansion on the energy projection. It is
observed that both ‘dyn’ and ‘opt’ methods provide a

speed-up of at least 3-6 times compared to the standard
method. The numbers in () denote the number of labels in

the problem.

Time (in seconds)
α-exp dyn α-exp opt α-exp

Dayton (3) 1.31 0.49 0.21
Garden (4) 1.20 0.44 0.19
Bench (3) 1.76 0.59 0.38
Beach (4) 1.59 0.51 0.25

recycling solutions provides a speed-up of at least 3-5
times compared to standard α-expansion.

5.2 Using Partially Optimal Solutions

We now show the results of our partially optimal solu-
tion based method (cf. §3.2) on a variety of energy min-
imization algorithms for the problems defined above.
Specifically, α-expansion, BP and TRW-S are used for
the experiments. Optimized versions of BP and TRW-S
refer to the computation of partially optimal solution
followed by running the corresponding algorithm on
the projected energy function. A comparison of the run-
times for all these algorithms is shown in Table 2. It is
observed that our method achieves a speed-up is 10-
15 times for most of the examples. In some cases (e.g.

Cow image with 3 labels), the speed-up is more than 100
times for optimized versions of TRW-S and BP algorithms.
The amount of speed-up depends on the strength of the
pairwise terms and the number of labels in the problem.
The speed-up increases with a decrease in both the
number of labels and the strength of the pairwise terms.
This is because the pairwise potential of the partial
optimality auxiliary problem (10) is closely related to
that in the original problem (4). Images with highly
textured regions also show orders of magnitude speed-
up for segmentation and stereo problems. Table 1 shows
the speed-up obtained for the Pn Potts model for various
examples (from [1]). Using partially optimal solutions
provides a speed-up of at least 4-6 times compared to
standard α-expansion.

An analysis of the partially optimal solution algo-
rithm shows that in some cases very few nodes may
be labelled. One such case is when the smoothness cost
γ is very high, as shown in Fig. 6(a). For illustration
purposes we chose the Tsukuba stereo problem, which
showed the most significant change in the number of
labelled nodes. We used two energy functions [6], [19] on
the stereo problem to demonstrate the effect of varying
the smoothness term. The unary potential in [19] is
computed using a normalized cross correlation approach
on pixel windows of size 15×15, while [6] uses the sub-
pixel window approach proposed by [38]. The pairwise
potential in both cases is the Potts model given by (4).
As the smoothness cost is increased, the percentage of
labelled nodes decreases, and the projected component
of the energy function remains large. The decrease is
more dramatic using the energy function in [6]. This
effect is perhaps because the partially optimal solution
algorithm relies on strong unary potentials. In the case
of [6], a large smoothness term dominates the unary
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TABLE 2
Running times for various single MRF problems: Comparison of the run-times (in seconds) of the standard and optimized
(opt) versions of α-expansion (α-exp), BP, TRW-S is shown. The optimized version refers to computing the partial solution
followed by solving the energy projection with the corresponding algorithm. The optimized versions are significantly faster in
all the examples. The speed-up obtained depends on the nature and difficulty of the problem. The run-times shown for both

BP and TRW-S versions correspond to the first 70 iterations. The number of iterations was chosen such that acceptable
qualitative results (segmentation or stereo map) were obtained for all the problems. Some of the smaller problems produce
results after 30-40 iterations, while others take 70-80 iterations. A better comparison of time vs energy is shown in Fig. 5

and Fig. 8. The numbers in () denote the number of labels in each problem.

Time (in seconds)
α-exp Fast-PD opt α-exp BP opt BP TRW-S opt TRW-S

Colour-based Segmentation:
Cow (3) 2.53 1.31 0.21 95.93 0.32 98.36 0.33
Cow (4) 3.75 1.72 0.38 108.32 0.42 111.69 0.43
Garden (4) 0.28 0.14 0.04 5.59 0.17 5.89 0.21
Stereo:
Tsukuba (16) 5.74 1.47 0.84 38.19 4.47 41.74 4.67
Venus (20) 11.87 3.07 3.03 67.04 14.97 71.46 16.02
Cones (60) 42.23 9.48 4.36 173.35 29.41 182.66 30.70
Teddy (60) 44.25 9.56 8.27 172.30 60.35 182.50 63.77
Object-based Segmentation:
Plane (4) 0.39 0.35 0.15 9.41 0.29 9.89 0.30
Bikes (5) 0.82 0.54 0.22 10.69 0.64 11.19 0.70
Road (5) 0.91 0.51 0.18 10.67 0.60 11.26 0.62
Building (7) 1.32 0.89 0.38 12.70 2.57 13.52 2.66
Car (8) 0.99 0.53 0.11 13.68 0.23 14.42 0.24

(a) (b) (c)

Fig. 7. A sample result of object-based segmentation is shown
in (a) Plane. Some of the stereo matching results are shown in
(b) Tsukuba-Left and (c) Teddy-Left. The first row shows the
original images. The second row shows the partially optimal
solution. The regions marked in red denote the unlabelled
pixels, which have low texture detail. Our method provides
more than 6× speed-up even when majority of the nodes are
unlabelled in the Teddy example. (This figure is best viewed
in colour.)

potentials, and leads to many unlabelled nodes. Thus,
only a small improvement in run-time performance is
achieved. However, our strategy of reusing the flow from the
partially optimal solution auxiliary problems always provides
improved performance in these cases (see Fig. 6(b)).
Segmentation and stereo matching results of some

of the images used in our experiments are shown in
Fig. 7. Note that even when majority of the nodes are
unlabelled in the partially optimal solution, e.g. Teddy
sequence in Fig. 7(c), our method provides more than 6
times speed-up. The proposed method is not only com-

putationally efficient, but also provides a lower energy
solution empirically in the case of TRW-S and BP. Further-
more, the optimality of the solutions is not compromised.
Fig. 8(a) compares the energies of the solutions and
lower bounds obtained using standard and optimized
versions of TRW-S. The optimized version using the en-
ergy function projection converges to the global optima
of the energy in only 0.64 seconds. Fig. 8(b) compares
the energies of the solution obtained using the standard
and optimized BP algorithms. Optimized BP converges to
a low energy (although not the global optima), in 0.85
seconds, while standard BP converges to a much higher
energy in 11.12 seconds. Standard BP solves the original
(large) problem and converges to a local optima. On the
other hand, optimized BP solves the projected energy
function defined on a subset of nodes and converges
to a better local optima. Empirically we observe that
BP is more likely to provide a better local optima on
the smaller problem (defined by the projected energy
function), which is easier to solve compared to the
original large problem. The solutions corresponding to
these energies are shown in Fig. 9.

6 SUMMARY

This paper proposes techniques for improving the per-
formance of algorithms for solving multi-label MRFs. As
there are no disadvantages in using them and many
advantages we would expect them to become standard.
Our methods work by recycling solutions from previous
problem instances, and reducing energy functions utiliz-
ing algorithms for generating partially optimal solutions.
Our work on reusing the dual (flow) solution for com-
puting optimal label moves across successive iterations
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Fig. 8. (a) Energy of the solution and lower bound obtained by running TRW-S algorithm on the Road image example [22].
Note that optimized TRW-S algorithm finds better energies (lower solution energy and higher lower bound) at any given point
in time. It also finds an optima in only 0.64 seconds. Standard TRW-S converged to this energy after 37.24 seconds. Thus,
the optimized version is more than 50 times faster. (b) Solution energies obtained by running standard and optimized BP

algorithm on the Building image example [22]. Optimized BP refers to the computation of partially optimal solution followed
by running the BP algorithm on the projected energy function. It finds an energy closer to the global optimum, while standard
BP does not reach this energy even after 30 seconds.

(a) (b) (c) (d)

Fig. 9. (a) Building image [22], and (b) the global opti-
mum solution computed by the TRW-S algorithm. Solutions
obtained using (c) standard BP, and (d) optimized BP with
an 8-neighbourhood. Neither the optimized nor the standard
versions converge to the optimal solution. However, optimized
BP is closer to the optima.

of the α-expansion algorithm results in a dynamic algo-
rithm. It can be seen as an extension of the work of [15],
[16] for minimizing multi-label non-submodular energy
functions. Experimental results show that our methods
provide a substantial improvement in the performance of
α-expansion, TRW-S, and BP algorithms. Our method also
provides similar or better performance compared to Fast-
PD. We expect that our techniques for simplifying energy
functions, and the subsequent recycling of computations
performed during this procedure can be used to make
Fast-PD faster. This is a topic for future research.

REFERENCES

[1] P. Kohli, M. P. Kumar, and P. H. S. Torr, “P3 & beyond: Move
making algorithms for solving higher order functions,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1645–1656,
2009.

[2] N. Komodakis, G. Tziritas, and N. Paragios, “Fast, approximately
optimal solutions for single and dynamic MRFs,” in Proc. Int’l
Conf. Computer Vision and Pattern Recognition, 2007.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy
minimization via graph cuts,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 23, no. 11, pp. 1222–1239, 2001.

[4] V. Kolmogorov and R. Zabih, “Multi-camera scene reconstruction
via graph cuts,” in Proc. European Conf. Computer Vision, vol. 3,
2002, pp. 82–96.

[5] C. Rother, S. Kumar, V. Kolmogorov, and A. Blake, “Digital
tapestry,” in Proc. Int’l Conf. Computer Vision and Pattern Recog-
nition, vol. 1, 2005, pp. 589–596.

[6] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. F. Tappen, and C. Rother, “A comparative study
of energy minimization methods for Markov random fields,” in
Proc. European Conf. Computer Vision, vol. 2, 2006, pp. 16–29.

[7] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Generalized belief
propagation,” in NIPS, 2000, pp. 689–695.

[8] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124–1137,
2004.

[9] D. Freedman and P. Drineas, “Energy minimization via graph
cuts: Settling what is possible,” in Proc. Int’l Conf. Computer Vision
and Pattern Recognition, vol. 2, 2005, pp. 939–946.

[10] H. Ishikawa, “Exact optimization for Markov random fields with
convex priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25,
no. 10, pp. 1333–1336, 2003.

[11] V. Kolmogorov and R. Zabih, “What energy functions can be
minimized via graph cuts?” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, pp. 147–159, 2004.

[12] V. Kolmogorov, “Convergent tree-reweighted message passing
for energy minimization,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 10, pp. 1568–1583, 2006.

[13] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “MAP estimation
via agreement on trees: message-passing and linear program-
ming,” IEEE Trans. on Information Theory, vol. 51, no. 11, pp. 3697–
3717, 2005.

[14] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief prop-
agation for early vision,” in Proc. Int’l Conf. Computer Vision and
Pattern Recognition, 2004, pp. 261–268.

[15] O. Juan and Y. Boykov, “Active graph cuts,” in Proc. Int’l Conf.
Computer Vision and Pattern Recognition, vol. 1, 2006, pp. 1023–
1029.

[16] P. Kohli and P. H. S. Torr, “Effciently solving dynamic Markov
random fields using graph cuts,” in Proc. Int’l Conf. Computer
Vision, vol. 2, 2005, pp. 922–929.

[17] N. Komodakis and G. Tziritas, “A new framework for approxi-
mate labeling via graph cuts,” in Proc. Int’l Conf. Computer Vision,
2005, pp. 1018–1025.

[18] V. Kolmogorov and C. Rother, “Minimizing non-submodular
functions with graph cuts: a review,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 29, no. 2, 2007.

[19] I. Kovtun, “Partial optimal labeling search for a NP-Hard subclass
of (max,+) problems,” in DAGM Symposium, 2003, pp. 402–409.

[20] E. Boros and P. L. Hammer, “Pseudo-boolean optimization,”
Discrete Applied Mathematics, vol. 123, pp. 155–225, 2002.



13

[21] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images,”
in Proc. Int’l Conf. Computer Vision, vol. 1, 2001, pp. 105–112.

[22] J. Shotton, J. M. Winn, C. Rother, and A. Criminisi, “TextonBoost:
Joint appearance, shape and context modeling for multi-class
object recognition and segmentation,” in Proc. European Conf.
Computer Vision, vol. 1, 2006, pp. 1–15.

[23] R. Paget and I. D. Longstaff, “Texture synthesis via a noncausal
nonparametric multiscale Markov random field,” IEEE Trans. Im-
age Processing, vol. 7, no. 6, pp. 925–931, 1998.

[24] S. Roth and M. J. Black, “Fields of experts: A framework for
learning image priors,” in Proc. Int’l Conf. Computer Vision and
Pattern Recognition, vol. 2, 2005, pp. 860–867.

[25] X. Lan, S. Roth, D. P. Huttenlocher, and M. J. Black, “Efficient
belief propagation with learned higher-order Markov random
fields,” in Proc. European Conf. Computer Vision, vol. 2, 2006, pp.
269–282.

[26] P. Kohli, L. Ladicky, and P. H. S. Torr, “Graph cuts for minimizing
robust higher order potentials,” in Proc. Int’l Conf. Computer Vision
and Pattern Recognition, 2008.

[27] S. Iwata, S. T. McCormick, and M. Shigeno, “A strongly polyno-
mial cut canceling algorithm for the submodular flow problem,”
in ICPO, vol. LNCS 1610, 1999, pp. 259–272.

[28] B. A. Zalesky, “Efficient determination of Gibbs
estimators with submodular energy functions,
http://arxiv.org/abs/math/0304041v1,” 2003.

[29] D. Schlesinger and B. Flach, “Transforming an arbitrary minsum
problem into a binary one,” Dresden University of Technology,
Tech. Rep. TUD-FI06-01, April 2006.

[30] J. Pearl, Probabilistic reasoning in intelligent systems: Networks of
plausible inference. Morgan Kaufmann, 1998.

[31] M. I. Schlesinger and V. Hlavac, Ten Lectures on Statistical and
Structural Pattern Recognition. Dordrecht, The Netherlands:
Kluwer Academic Publishers, 2002.

[32] T. Werner, “A linear programming approach to max-sum problem:
A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 7,
pp. 1165–1179, 2007.

[33] N. Komodakis, N. Paragios, and G. Tziritas, “MRF optimization
via dual decomposition: Message-passing revisited,” in Proc. Int’l
Conf. Computer Vision, 2007.

[34] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. H. S.
Torr, “On partial optimality in multi-label mrfs,” in ICML, 2008,
pp. 480–487.

[35] I. Kovtun, “Image segmentation based on sufficient conditions
for optimality in NP-complete classes of structural labeling prob-
lems,” Ph.D. dissertation, IRTC ITS Nat. Academy of Science
Ukraine, Kiev, 2004, in Ukranian.

[36] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of
dense two-frame stereo correspondence algorithm,” Int’l J. Com-
puter Vision, vol. 47, pp. 7–42, 2002.

[37] F. Schroff, A. Criminisi, and A. Zisserman, “Single-histogram class
models for image segmentation,” in ICVGIP, 2006.

[38] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that
is insensitive to image sampling,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 4, pp. 401–406, 1998.

Karteek Alahari received the BTech (Honours)
and the Masters degrees in computer science
from IIIT, Hyderabad, in 2004 and 2005 respec-
tively. He is currently a PhD student at Oxford
Brookes University, Oxford, and is a member
of the Brookes Vision Group and an associate
member of the Visual Geometry Group at the
University of Oxford. He is a student member of
the IEEE.

Pushmeet Kohli is a researcher in the Machine
Learning and Perception group at Microsoft Re-
search Cambridge, and an associate of Trinity
Hall, University of Cambridge. He completed his
PhD studies at Oxford Brookes University under
the supervision of Prof. Philip Torr. His PhD
thesis, titled “Minimizing Dynamic and Higher
Order Energy Functions using Graph Cuts”, was
the winner of the British Machine Vision Associ-
ation’s Sullivan Doctoral Thesis Award, and was
a runner-up for the British Computer Society’s

Distinguished Dissertation Award. Before joining Microsoft Research
Cambridge, Pushmeet was a visiting researcher at Microsoft Research
Bangalore. He previously worked in the Foundation of Software Engi-
neering Group at MSR Redmond. Pushmeet has worked on a number
of problems in Computer Vision, Machine Learning and Discrete Opti-
mization. His papers have appeared in SIGGRAPH, PAMI, IJCV, ICCV,
CVPR, ICML and ECCV.

Philip H. S. Torr received the PhD (DPhil)
degree from the Robotics Research Group of
the University of Oxford under Professor David
Murray of the Active Vision Group. He worked
for another three years at Oxford as a research
fellow and is currently a visiting fellow in en-
gineering science at the University of Oxford,
working closely with Professor Zisserman and
the Visual Geometry Group. He left Oxford to
work for six years as a research scientist for Mi-
crosoft Research, first in Redmond, Washington,

in the Vision Technology Group, then in Cambridge, United Kingdom,
founding the vision side of the Machine Learning and Perception Group.
He is now a professor of computer vision and machine learning at Oxford
Brookes University. He is a senior member of the IEEE. He is a Royal
Society Wolfson Research Merit Award holder.


