Skip to Main content Skip to Navigation
Conference papers

Combining Appearance and Structure from Motion Features for Road Scene Understanding

Abstract : In this paper we present a framework for pixel-wise object segmentation of road scenes that combines motion and appearance features. It is designed to handle street-level imagery such as that on Google Street View and Microsoft Bing Maps. We formulate the problem in a CRF framework in order to probabilistically model the label likelihoods and the a priori knowledge. An extended set of appearance-based features is used, which consists of textons, colour, location and HOG descriptors. A novel boosting approach is then applied to combine the motion and appearance-based features. We also incorporate higher order potentials in our CRF model, which produce segmentations with precise object boundaries. We evaluate our method both quantitatively and qualitatively on the challenging Cambridge-driving Labeled Video dataset. Our approach shows an overall recognition accuracy of 84% compared to the state-of-the-art accuracy of 69%.
Document type :
Conference papers
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : Karteek Alahari Connect in order to contact the contributor
Submitted on : Saturday, October 17, 2015 - 11:32:39 PM
Last modification on : Wednesday, May 4, 2022 - 12:18:03 PM
Long-term archiving on: : Thursday, April 27, 2017 - 7:20:12 AM


Files produced by the author(s)



Paul Sturgess, Karteek Alahari, Lubor Ladicky, Philip H. S. Torr. Combining Appearance and Structure from Motion Features for Road Scene Understanding. BMVC - British Machine Vision Conference, Sep 2009, London, United Kingdom. ⟨10.5244/C.26.127⟩. ⟨hal-01216879⟩



Record views


Files downloads