J. Surralles, S. Jackson, M. Jasin, M. Kastan, S. West et al., Molecular cross-talk among chromosome fragility syndromes, Genes & Development, vol.18, issue.12, pp.1359-70, 2004.
DOI : 10.1101/gad.1216304

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC423188

A. Aurias, J. Antoine, R. Assathiany, M. Odievre, and B. Dutrillaux, Radiation sensitivity of bloom's syndrome lymphocytes during S and G2 phases, Cancer Genetics and Cytogenetics, vol.16, issue.2, pp.131-137, 1985.
DOI : 10.1016/0165-4608(85)90006-8

A. Krepinsky, J. Heddle, and J. German, Sensitivity of Bloom's syndrome lymphocytes to ethyl methanesulfonate, Human Genetics, vol.8, issue.Suppl. 2, pp.151-157, 1979.
DOI : 10.1007/BF00390236

A. Taylor, Unrepaired DNA strand breaks in irradiated ataxia telangiectasia lymphocytes suggested from cytogenetic observations, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.50, issue.3, pp.407-425, 1978.
DOI : 10.1016/0027-5107(78)90045-3

J. German, R. A. David, and B. , Chromosomal Breakage in a Rare and Probably Genetically Determined Syndrome of Man, Science, vol.148, issue.3669, pp.506-513, 1965.
DOI : 10.1126/science.148.3669.506

J. German, M. Sanz, S. Ciocci, T. Ye, and N. Ellis, gene in persons in the Bloom's Syndrome Registry, Human Mutation, vol.24, issue.8, pp.743-53, 2007.
DOI : 10.1002/humu.20501

R. Chaganti, S. Schonberg, and J. German, A Manyfold Increase in Sister Chromatid Exchanges in Bloom's Syndrome Lymphocytes, Proceedings of the National Academy of Sciences, vol.71, issue.11, pp.4508-4520, 1974.
DOI : 10.1073/pnas.71.11.4508

M. Tadjoedin and F. Fraser, Heredity of Ataxia-Telangiectasia (Louis-Bar Syndrome), Archives of Pediatrics & Adolescent Medicine, vol.110, issue.1, pp.64-72, 1965.
DOI : 10.1001/archpedi.1965.02090030070009

P. Concannon and R. Gatti, Diversity of ATM gene mutations detected in patients with ataxia???telangiectasia, Human Mutation, vol.10, issue.2, p.100, 1997.
DOI : 10.1002/(SICI)1098-1004(1997)10:2<100::AID-HUMU2>3.3.CO;2-E

T. Kojis, R. Gatti, and R. Sparkes, The cytogenetics of ataxia telangiectasia, Cancer Genetics and Cytogenetics, vol.56, issue.2, pp.143-156, 1991.
DOI : 10.1016/0165-4608(91)90164-P

J. Oxford, D. Harnden, J. Parrington, and J. Delhanty, Specific chromosome aberrations in ataxia telangiectasia., Journal of Medical Genetics, vol.12, issue.3, pp.251-62, 1975.
DOI : 10.1136/jmg.12.3.251

S. Lobitz and E. Velleuer, Guido Fanconi (1892???1979): a jack of all trades, Nature Reviews Cancer, vol.7, issue.11, pp.893-901, 2006.
DOI : 10.1016/j.yexcr.2006.06.014

J. De-winter and H. Joenje, The genetic and molecular basis of Fanconi anemia, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.668, issue.1-2, pp.11-20, 2009.
DOI : 10.1016/j.mrfmmm.2008.11.004

Y. Kee, D. Andrea, and A. , Expanded roles of the Fanconi anemia pathway in preserving genomic stability, Genes & Development, vol.24, issue.16, pp.1680-94, 2010.
DOI : 10.1101/gad.1955310

F. Vaz, H. Hanenberg, and B. Schuster, Mutation of the RAD51C gene in a Fanconi anemia???like disorder, Nature Genetics, vol.176, issue.5, pp.406-415, 2010.
DOI : 10.1002/(SICI)1096-987X(19980415)19:5<535::AID-JCC6>3.0.CO;2-N

Y. Kim, F. Lach, and R. Desetty, Mutations of the SLX4 gene in Fanconi anemia, Nature Genetics, vol.668, issue.2, pp.142-148, 2011.
DOI : 10.1016/S1535-6108(03)00050-3

M. Bogliolo, B. Schuster, and C. Stoepker, Mutations in ERCC4, Encoding the DNA-Repair Endonuclease XPF, Cause Fanconi Anemia, The American Journal of Human Genetics, vol.92, issue.5, pp.800-806, 2013.
DOI : 10.1016/j.ajhg.2013.04.002

R. Greenberg, S. Sawyer, and L. Tian, Biallelic mutations in BRCA1 cause a new Fanconi anemia subtype, Cancer discov, p.14, 2014.

A. Hira, K. Yoshida, K. Sato, Y. Okuno, Y. Shiraishi et al., Mutations in the Gene Encoding the E2 Conjugating Enzyme UBE2T Cause Fanconi Anemia, The American Journal of Human Genetics, vol.96, issue.6, pp.1001-1008, 2015.
DOI : 10.1016/j.ajhg.2015.04.022

T. Schroeder and J. German, Bloom's syndrome and Fanconi's anemia: Demonstration of two distinctive patterns of chromosome disruption and rearrangement, Humangenetik, vol.25, issue.4, pp.299-306, 1974.
DOI : 10.1007/BF00336905

A. Auerbach, Fanconi anemia and its diagnosis, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.668, issue.1-2, pp.4-10, 2009.
DOI : 10.1016/j.mrfmmm.2009.01.013

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742943

M. Amor-guéret, Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis, Cancer Letters, vol.236, issue.1, pp.1-12, 2006.
DOI : 10.1016/j.canlet.2005.04.023

A. Tulpule, M. Lensch, and J. Miller, Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage, Blood, vol.115, issue.17, pp.3453-62, 2011.
DOI : 10.1182/blood-2009-10-246694

F. Langevin, G. Crossan, and I. Rosado, Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice, Nature, vol.35, issue.7354, pp.53-61, 2011.
DOI : 10.1038/nature10192

I. Rosado, F. Langevin, and G. Crossan, Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway, Nature Structural & Molecular Biology, vol.5, issue.12, pp.1432-1436, 2011.
DOI : 10.1038/nsmb.2173

R. Ceccaldi, K. Parmar, and E. Mouly, Bone Marrow Failure in Fanconi Anemia Is Triggered by an Exacerbated p53/p21 DNA Damage Response that Impairs Hematopoietic Stem and Progenitor Cells, Cell Stem Cell, vol.11, issue.1, pp.36-49, 2012.
DOI : 10.1016/j.stem.2012.05.013

M. Heinrich, M. Hoatlin, and A. Zigler, DNA cross-linker-induced G2/M arrest in group C Fanconi anemia lymphoblasts reflects normal checkpoint function, Blood, vol.91, pp.275-87, 1998.

B. Freie, S. Ciccone, and X. Li, A Role for the Fanconi Anemia C Protein in Maintaining the DNA Damage-induced G2 Checkpoint, Journal of Biological Chemistry, vol.279, issue.49, pp.50986-93, 2004.
DOI : 10.1074/jbc.M407160200

K. Neveling, D. Endt, and H. Hoehn, Genotype???phenotype correlations in Fanconi anemia, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.668, issue.1-2, pp.73-91, 2009.
DOI : 10.1016/j.mrfmmm.2009.05.006

R. Ceccaldi, D. Briot, and J. Larghero, Spontaneous abrogation of the G2 DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients, Journal of Clinical Investigation, vol.121, issue.1, pp.184-94, 2011.
DOI : 10.1172/JCI43836DS1

A. Faure, A. Naldi, and C. Chaouiya, Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, vol.22, issue.14, pp.124-131, 2006.
DOI : 10.1093/bioinformatics/btl210

URL : https://hal.archives-ouvertes.fr/hal-00310984

L. Mendoza, A network model for the control of the differentiation process in Th cells, Biosystems, vol.84, issue.2, pp.101-115, 2006.
DOI : 10.1016/j.biosystems.2005.10.004

R. Zhang, M. Shah, and J. Yang, Network model of survival signaling in large granular lymphocyte leukemia, Proceedings of the National Academy of Sciences, vol.105, issue.42, pp.16308-16321, 2009.
DOI : 10.1073/pnas.0806447105

M. Chaves, R. Albert, and E. Sontag, Robustness and fragility of Boolean models for genetic regulatory networks, Journal of Theoretical Biology, vol.235, issue.3, pp.431-480, 2005.
DOI : 10.1016/j.jtbi.2005.01.023

C. Christensen, J. Thakar, and R. Albert, Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks, IET Systems Biology, vol.1, issue.2, pp.61-77, 2007.
DOI : 10.1049/iet-syb:20060071

M. Wu, X. Yang, and C. Chan, A Dynamic Analysis of IRS-PKR Signaling in Liver Cells: A Discrete Modeling Approach, PLoS ONE, vol.4, issue.12, p.8040, 2009.
DOI : 10.1371/journal.pone.0008040.s007

A. Rodriguez, D. Sosa, and L. Torres, A Boolean network model of the FA/BRCA pathway, Bioinformatics, vol.28, issue.6, pp.858-66, 2012.
DOI : 10.1093/bioinformatics/bts036

M. Van-vugt and M. Yaffe, Cell cycle re-entry mechanisms after DNA damage checkpoints: Giving it some gas to shut off the breaks!, Cell Cycle, vol.9, issue.11, pp.2097-101, 2010.
DOI : 10.4161/cc.9.11.11840

M. Van-vugt, A. Gardino, and R. Linding, A Mitotic Phosphorylation Feedback Network Connects Cdk1, Plk1, 53BP1, and Chk2 to Inactivate the G2/M DNA Damage Checkpoint, PLoS Biology, vol.2, issue.1, p.1000287, 2010.
DOI : 10.1371/journal.pbio.1000287.s003

V. Halim, M. Alvarez-fernandez, and Y. Xu, omparative phosphoproteomic analysis of checkpoint recovery identifies new regulators of the DNA damage response, Sci Signal, vol.6, p.9, 2013.

R. Medema and L. Macurek, Checkpoint recovery in cells: how a molecular understanding can help in the fight against cancer, F1000 Biology Reports, vol.3, 2011.
DOI : 10.3410/B3-10

M. Álvarez-fernández, R. Medema, and A. Lindqvist, Transcriptional regulation underlying recovery from a DNA damage-induced arrest, Transcription, vol.8, issue.1, pp.32-37, 2010.
DOI : 10.1016/j.molcel.2008.03.016

A. Meetei, A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M, Nature Genetics, vol.7, issue.9, pp.958-63, 2005.
DOI : 10.1073/pnas.1937626100

Y. Kee, Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis, Genes & Development, vol.23, issue.5, pp.555-60, 2009.
DOI : 10.1101/gad.1761309

X. Wang, Chk1-Mediated Phosphorylation of FANCE Is Required for the Fanconi Anemia/BRCA Pathway, Molecular and Cellular Biology, vol.27, issue.8, pp.3098-108, 2007.
DOI : 10.1128/MCB.02357-06

A. Smogorzewska, Identification of the FANCI Protein, a Monoubiquitinated FANCD2 Paralog Required for DNA Repair, Cell, vol.129, issue.2, pp.289-301, 2007.
DOI : 10.1016/j.cell.2007.03.009

M. Bogliolo, Histone H2AX and Fanconi anemia FANCD2 function in the same pathway to maintain chromosome stability, The EMBO Journal, vol.16, issue.5, pp.1340-51, 2007.
DOI : 10.1038/sj.emboj.7601574

P. Pace, Ku70 Corrupts DNA Repair in the Absence of the Fanconi Anemia Pathway, Science, vol.329, issue.5988, pp.219-242, 2010.
DOI : 10.1126/science.1192277

N. Bhagwat, XPF-ERCC1 Participates in the Fanconi Anemia Pathway of Cross-Link Repair, Molecular and Cellular Biology, vol.29, issue.24, pp.6427-6464, 2009.
DOI : 10.1128/MCB.00086-09

K. Hanada, The structure-specific endonuclease Mus81???Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks, The EMBO Journal, vol.58, issue.20, pp.492125-4932, 2006.
DOI : 10.1016/j.dnarep.2004.03.037

M. Lieber, The Mechanism of Double-Strand DNA Break Repair by the Nonhomologous DNA End-Joining Pathway, Annual Review of Biochemistry, vol.79, issue.1, pp.181-211, 2010.
DOI : 10.1146/annurev.biochem.052308.093131

D. Chang and K. Cimprich, DNA damage tolerance: when it's OK to make mistakes, Nature Chemical Biology, vol.282, issue.2, pp.82-90, 2009.
DOI : 10.1038/nchembio.139

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663399

K. Mirchandani, The Fanconi anemia core complex is required for efficient point mutagenesis and Rev1 foci assembly, DNA Repair, vol.7, issue.6, pp.902-913, 2008.
DOI : 10.1016/j.dnarep.2008.03.001

E. Kass and M. Jasin, Collaboration and competition between DNA double-strand break repair pathways, FEBS Letters, vol.39, issue.17, pp.3703-3711, 2010.
DOI : 10.1016/j.febslet.2010.07.057

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3954739

A. Adamo, Preventing Nonhomologous End Joining Suppresses DNA Repair Defects of Fanconi Anemia, Molecular Cell, vol.39, issue.1, pp.25-35, 2010.
DOI : 10.1016/j.molcel.2010.06.026

M. Yaneva, Interaction of DNA-dependent protein kinase with DNA and with Ku: biochemical and atomic-force microscopy studies, The EMBO Journal, vol.16, issue.16, pp.5098-112, 1997.
DOI : 10.1093/emboj/16.16.5098

K. Cimprich and D. Cortez, ATR: an essential regulator of genome integrity, Nature Reviews Molecular Cell Biology, vol.67, issue.8, pp.616-127, 2008.
DOI : 10.1038/nrm2450

S. Collis, FANCM and FAAP24 Function in ATR-Mediated Checkpoint Signaling Independently of the Fanconi Anemia Core Complex, Molecular Cell, vol.32, issue.3, pp.313-337, 2008.
DOI : 10.1016/j.molcel.2008.10.014

A. Jazayeri, ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks, Nature Cell Biology, vol.19, issue.1, pp.37-45, 2006.
DOI : 10.1038/sj.emboj.7600269

T. Stiff, ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling, The EMBO Journal, vol.100, issue.24, pp.5775-82, 2006.
DOI : 10.1038/sj.emboj.7601446

M. Lavin, ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks, Oncogene, vol.2, issue.56, pp.7749-58, 2008.
DOI : 10.1038/35044005

J. Lee, The Rad9-Hus1-Rad1 Checkpoint Clamp Regulates Interaction of TopBP1 with ATR, Journal of Biological Chemistry, vol.282, issue.38, pp.28036-28080, 2007.
DOI : 10.1074/jbc.M704635200

S. Shieh, The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites, Genes Dev, vol.14, pp.289-300, 2000.

F. Bassermann and M. Pagano, Dissecting the role of ubiquitylation in the DNA damage response checkpoint in G2, Cell Death and Differentiation, vol.8, issue.1, pp.78-85, 2010.
DOI : 10.1038/cdd.2009.104

C. Mussel, M. Hopfensitz, and H. Kestler, BoolNet--an R package for generation, reconstruction and analysis of Boolean networks, Bioinformatics, vol.26, issue.10, pp.1378-80, 2010.
DOI : 10.1093/bioinformatics/btq124

M. Fenech and A. Morley, Measurement of micronuclei in lymphocytes, Mutation Research/Environmental Mutagenesis and Related Subjects, vol.147, issue.1-2, pp.29-36, 1985.
DOI : 10.1016/0165-1161(85)90015-9

B. Zhou and S. Elledge, The DNA damage response: putting checkpoints in perspective, Nature, vol.408, pp.433-442, 2000.

K. Khanna and S. Jackson, DNA double-strand breaks: signaling, repair and the cancer connection, Nature Genetics, vol.27, issue.3, pp.247-54, 2001.
DOI : 10.1038/85798

J. Bloom and F. Cross, Multiple levels of cyclin specificity in cell-cycle control, Nature Reviews Molecular Cell Biology, vol.12, issue.2, pp.149-60, 2007.
DOI : 10.1038/nrm2105

L. Krenning, F. Feringa, and I. Shaltiel, Transient Activation of p53 in G2 Phase Is Sufficient to Induce Senescence, Molecular Cell, vol.55, issue.1, pp.59-72, 2014.
DOI : 10.1016/j.molcel.2014.05.007

G. Karlebach and R. Shamir, Modelling and analysis of gene regulatory networks, Nature Reviews Molecular Cell Biology, vol.18, issue.10, pp.770-80, 2008.
DOI : 10.1038/nrm2503

M. Morris, J. Saez-rodriguez, P. Sorger, and D. Lauffenburger, Logic-Based Models for the Analysis of Cell Signaling Networks, Biochemistry, vol.49, issue.15, pp.3216-3240, 2010.
DOI : 10.1021/bi902202q

N. Tenazinha and S. Vinga, A Survey on Methods for Modeling and Analyzing Integrated Biological Networks, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, issue.4, pp.943-58, 2011.
DOI : 10.1109/TCBB.2010.117

S. Bornholdt, Boolean network models of cellular regulation: prospects and limitations, Journal of The Royal Society Interface, vol.vol. XVII, issue.2, pp.85-94, 2008.
DOI : 10.1016/S0955-0674(03)00017-6

Y. Lazebnik, Can a biologist fix a radio? ? or, what I learned while studying apoptosis, Biochemistry (Moscow), vol.10, issue.12, pp.1403-1409, 2004.
DOI : 10.1007/s10541-005-0088-1

J. Tyson, K. Chen, and B. Novak, Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell, Current Opinion in Cell Biology, vol.15, issue.2, pp.221-252, 2003.
DOI : 10.1016/S0955-0674(03)00017-6

A. Wang and A. Smogorzewska, SnapShot: Fanconi Anemia and Associated Proteins, Cell, vol.160, issue.1-2, p.354, 2015.
DOI : 10.1016/j.cell.2014.12.031

P. Fritsch, T. Craddock, R. Del-rosario, M. Rice, A. Smylie et al., Succumbing to the laws of attraction, Systems Biomedicine, vol.52, issue.3, pp.179-94, 2013.
DOI : 10.1016/S0197-2456(02)00192-7

A. Peng, Working hard for recovery: mitotic kinases in the DNA damage checkpoint, Cell & Bioscience, vol.3, issue.1, p.20, 2013.
DOI : 10.1016/j.gde.2006.12.008

V. Amador, S. Ge, and P. Santamaría, APC CDC20 controls the ubiquitin-mediated degradation of p21 in prometaphase, Mol Cell, vol.3, pp.462-73, 2007.

N. Mailand, S. Bekker-jensen, and J. Bartek, Destruction of Claspin by SCF??TrCP Restrains Chk1 Activation and Facilitates Recovery from Genotoxic Stress, Molecular Cell, vol.23, issue.3, pp.307-325, 2006.
DOI : 10.1016/j.molcel.2006.06.016

H. Liang, A. Esposito, S. De, S. Ber, C. P. Surana et al., Homeostatic control of polo-like kinase-1 engenders non-genetic heterogeneity in G2 checkpoint fidelity and timing, Nature Communications, vol.14, 2014.
DOI : 10.1016/j.ceb.2013.07.003

I. Shaltiel, L. Krenning, W. Bruinsma, and R. Medema, The same, only different - DNA damage checkpoints and their reversal throughout the cell cycle, Journal of Cell Science, vol.128, issue.4, pp.607-627, 2015.
DOI : 10.1242/jcs.163766

A. Lindqvist, M. De-bruijn, and L. Macurek, Wip1 confers G2 checkpoint recovery competence by counteracting p53-dependent transcriptional repression, The EMBO Journal, vol.27, issue.20, pp.3196-206, 2009.
DOI : 10.1038/emboj.2009.246

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771084

I. Shaltiel, M. Aprelia, and A. Saurin, Distinct phosphatases antagonize the p53 response in different phases of the cell cycle, Proceedings of the National Academy of Sciences, vol.111, issue.20, pp.7313-7321, 2014.
DOI : 10.1073/pnas.1322021111

A. Seki, J. Coppinger, and C. Jang, Bora and the Kinase Aurora A Cooperatively Activate the Kinase Plk1 and Control Mitotic Entry, Science, vol.320, issue.5883, pp.1655-1663, 2008.
DOI : 10.1126/science.1157425

L. Macurek, A. Lindqvist, and D. Lim, Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery, Nature, vol.5, issue.7209, pp.119-142, 2008.
DOI : 10.1038/nature07185

M. Van-vugt, A. Brás, and R. Medema, Polo-like Kinase-1 Controls Recovery from a G2 DNA Damage-Induced Arrest in Mammalian Cells, Molecular Cell, vol.15, issue.5, pp.799-811, 2004.
DOI : 10.1016/j.molcel.2004.07.015