Skip to Main content Skip to Navigation
Preprints, Working Papers, ...

Sparse Polynomial Systems with many Positive Solutions from Bipartite Simplicial Complexes

Frédéric Bihan 1 Pierre-Jean Spaenlehauer 2
2 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : Consider a regular triangulation of the convex-hull $P$ of a set $\mathcal A$ of $n$ points in $\mathbb R^d$, and a real matrix $C$ of size $d \times n$. A version of Viro's method allows to construct from these data an unmixed polynomial system with support $\mathcal A$ and coefficient matrix $C$ whose number of positive solutions is bounded from below by the number of $d$-simplices which are positively decorated by $C$. We show that all the $d$-simplices of a triangulation can be positively decorated if and only if the triangulation is balanced, which in turn is equivalent to the fact that its dual graph is bipartite. This allows us to identify, among classical families, monomial supports which admit maximally positive systems, i.e. systems all toric complex solutions of which are real and positive. These families give some evidence in favor of a conjecture due to Bihan. We also use this technique in order to construct fewnomial systems with many positive solutions. This is done by considering a simplicial complex with bipartite dual graph included in a regular triangulation of the cyclic polytope.
Document type :
Preprints, Working Papers, ...
Complete list of metadata

Cited literature [42 references]  Display  Hide  Download
Contributor : Pierre-Jean Spaenlehauer Connect in order to contact the contributor
Submitted on : Monday, April 18, 2016 - 9:18:34 AM
Last modification on : Wednesday, November 3, 2021 - 7:08:54 AM
Long-term archiving on: : Tuesday, July 19, 2016 - 10:57:24 AM


Files produced by the author(s)


  • HAL Id : hal-01217547, version 2
  • ARXIV : 1510.05622


Frédéric Bihan, Pierre-Jean Spaenlehauer. Sparse Polynomial Systems with many Positive Solutions from Bipartite Simplicial Complexes. 2016. ⟨hal-01217547v2⟩



Les métriques sont temporairement indisponibles