Sparse Polynomial Systems with many Positive Solutions from Bipartite Simplicial Complexes

Frédéric Bihan 1 Pierre-Jean Spaenlehauer 2
2 CARAMEL - Cryptology, Arithmetic: Hardware and Software
Inria Nancy - Grand Est, LORIA - ALGO - Department of Algorithms, Computation, Image and Geometry
Abstract : Consider a regular triangulation of the convex-hull $P$ of a set $\mathcal A$ of $n$ points in $\mathbb R^d$, and a real matrix $C$ of size $d \times n$. A version of Viro's method allows to construct from these data an unmixed polynomial system with support $\mathcal A$ and coefficient matrix $C$ whose number of positive solutions is bounded from below by the number of $d$-simplices which are positively decorated by $C$. We show that all the $d$-simplices of a triangulation can be positively decorated if and only if the triangulation is balanced, which in turn is equivalent to the fact that its dual graph is bipartite. This allows us to identify, among classical families, monomial supports which admit maximally positive systems, i.e. systems all toric complex solutions of which are real and positive. These families give some evidence in favor of a conjecture due to Bihan. We also use this technique in order to construct fewnomial systems with many positive solutions. This is done by considering a simplicial complex with bipartite dual graph included in a regular triangulation of the cyclic polytope.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01217547
Contributeur : Pierre-Jean Spaenlehauer <>
Soumis le : lundi 18 avril 2016 - 09:18:34
Dernière modification le : jeudi 22 septembre 2016 - 14:31:10
Document(s) archivé(s) le : mardi 19 juillet 2016 - 10:57:24

Fichiers

notes.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01217547, version 2
  • ARXIV : 1510.05622

Collections

Citation

Frédéric Bihan, Pierre-Jean Spaenlehauer. Sparse Polynomial Systems with many Positive Solutions from Bipartite Simplicial Complexes. 2016. 〈hal-01217547v2〉

Partager

Métriques

Consultations de
la notice

234

Téléchargements du document

59