E. J. Aguilera-aguilera, ´. A. Poyato, F. J. Madrid-cuevas, and R. M. Carnicer, The computation of polygonal approximations for 2D contours based on a concavity tree, Journal of Visual Communication and Image Representation, vol.25, issue.8, pp.1905-1917, 2014.
DOI : 10.1016/j.jvcir.2014.09.012

E. Attneave, Some informational aspects of visual perception., Psychological Review, vol.61, issue.3, pp.183-193, 1954.
DOI : 10.1037/h0054663

. Fig, Polygonal simplification results (in red) on noisy data using width parameter ?=1.5, and a reduction of 10% of dominant points

A. R. Backes and O. M. Bruno, Polygonal approximation of digital planar curves through vertex betweenness, Information Sciences, vol.222, pp.795-804, 2013.
DOI : 10.1016/j.ins.2012.07.062

P. Bhowmick and B. B. Bhattacharya, Fast Polygonal Approximation of Digital Curves Using Relaxed Straightness Properties, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.29, issue.9, pp.1590-1602, 2007.
DOI : 10.1109/TPAMI.2007.1082

I. Debled-rennesson, F. Feschet, and J. Rouyer-degli, Optimal blurred segments decomposition of noisy shapes in linear time, Computers & Graphics, vol.30, issue.1, pp.30-36, 2006.
DOI : 10.1016/j.cag.2005.10.007

URL : https://hal.archives-ouvertes.fr/inria-00173228

A. Faure, L. Buzer, and F. Feschet, Tangential cover for thick digital curves, Pattern Recognition, vol.42, issue.10, pp.2279-2287, 2009.
DOI : 10.1016/j.patcog.2008.11.009

URL : https://hal.archives-ouvertes.fr/hal-00622470

F. Feschet and L. Tougne, Optimal Time Computation of the Tangent of a Discrete Curve: Application to the Curvature, DGCI. LNCS, pp.31-40, 1999.
DOI : 10.1007/3-540-49126-0_3

F. Feschet, Fast Guaranteed Polygonal Approximations of Closed Digital Curves, SCIA. LNCS, pp.910-919, 2005.
DOI : 10.1007/11499145_92

M. Marji and P. Siy, A new algorithm for dominant points detection and polygonization of digital curves, Pattern Recognition, vol.36, issue.10, pp.2239-2251, 2003.
DOI : 10.1016/S0031-3203(03)00119-5

M. Marji and P. Siy, Polygonal representation of digital planar curves through dominant point detection???a nonparametric algorithm, Pattern Recognition, vol.37, issue.11, pp.2113-2130, 2004.
DOI : 10.1016/j.patcog.2004.03.004

A. Masood, Dominant point detection by reverse polygonization of digital curves, Image and Vision Computing, vol.26, issue.5, pp.702-715, 2008.
DOI : 10.1016/j.imavis.2007.08.006

A. Masood, Optimized polygonal approximation by dominant point deletion, Pattern Recognition, vol.41, issue.1, pp.227-239, 2008.
DOI : 10.1016/j.patcog.2007.05.021

T. P. Nguyen and I. Debled-rennesson, Curvature Estimation in Noisy Curves, CAIP. LNCS, pp.474-481, 2007.
DOI : 10.1007/978-3-540-74272-2_59

URL : https://hal.archives-ouvertes.fr/hal-00184127

T. P. Nguyen, A discrete geometry approach for dominant point detection, Pattern Recognition, vol.44, issue.1, pp.32-44, 2011.
DOI : 10.1016/j.patcog.2010.06.022

URL : https://hal.archives-ouvertes.fr/inria-00526714

J. P. Reveilì-es, Géométrie discrète, calculs en nombre entiers et algorithmique, thèse d'´ etat, 1991.

A. Rosenfeld and E. Johnston, Angle Detection on Digital Curves, IEEE Transactions on Computers, vol.22, issue.9, pp.875-878, 1973.
DOI : 10.1109/TC.1973.5009188

P. L. Rosin, Techniques for assessing polygonal approximations of curves, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.19, issue.6, pp.659-666, 1997.
DOI : 10.1109/34.601253

D. Sarkar, A simple algorithm for detection of significant vertices for polygonal approximation of chain-coded curves, Pattern Recognition Letters, vol.14, issue.12, pp.959-964, 1993.
DOI : 10.1016/0167-8655(93)90004-W

C. Teh and R. Chin, On the detection of dominant points on digital curves, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.8, pp.859-872, 1989.
DOI : 10.1109/34.31447

B. Wang, D. Brown, X. Zhang, H. Li, Y. Gao et al., Polygonal approximation using integer particle swarm optimization, Information Sciences, vol.278, pp.311-326, 2014.
DOI : 10.1016/j.ins.2014.03.055