Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem

Abstract : This paper deals with the spatial and time discretization of the transient Oseen equations. Finite elements with symmetric stabilization in space are combined with several time-stepping schemes (monolithic and fractional-step). Quasi-optimal (in space) and optimal (in time) error estimates are established for smooth solutions in all flow regimes. We first analyze monolithic time discretizations using the Backward Differentation Formulas of order 1 and 2 (BDF1 and BDF2). We derive a new estimate on the time-average of the pressure error featuring the same robustness with respect to the Reynolds number as the velocity estimate. Then, we analyze fractional-step pressure-projection methods using BDF1. The stabilization of velocities and pressures can be treated either implicitly or explicitly. Numerical results illustrate the main theoretical findings.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (2), pp.487-507. 〈10.1051/m2an/2016028〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01218328
Contributeur : Miguel Angel Fernández <>
Soumis le : mardi 20 octobre 2015 - 23:49:34
Dernière modification le : jeudi 26 avril 2018 - 10:28:54
Document(s) archivé(s) le : vendredi 28 avril 2017 - 07:10:16

Fichier

RR-8799.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Erik Burman, Alexandre Ern, Miguel Angel Fernández. Fractional-step methods and finite elements with symmetric stabilization for the transient Oseen problem. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2017, 51 (2), pp.487-507. 〈10.1051/m2an/2016028〉. 〈hal-01218328〉

Partager

Métriques

Consultations de la notice

898

Téléchargements de fichiers

314