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Abstract

This article presents an analysis of two-dimensional four-bar mechanisms with joint clearance,
when one joint is actuated by collocated open-loop or state feedback controllers (proportional-derivative,
state feedback linearization, passivity-based control). The study is led with numerical simulations
obtained with a projected Moreau-Jean's event-capturing algorithm. The contact/impact model uses
kinematic coef cients of restitution, and Coulomb’s friction. The focus is put on how much the per-
formance deteriorates when clearances are added in the joints. It is shown that collocated feedback
controllers behave in a very robust way.

1 Introduction

A four-bar mechanism is the simplest form of closed chain linkage. Itis widely used in many industrial
applications. A closed chain linkage may be used, for transmission or transformation of motion, to
precisely reach the desired position or orientation. Usually the performance of a closed chain linkage
is not as desired due to the manufacturing tolerances on links, clearance in the joints and the assembly
tolerances. However the effects of clearance in the joints are different from link dimensional tolerances.
The link dimensional tolerance leads to deviation in position and orientation which are predictable and
repeatable. A joint clearance is a hard highly nonlinear disturbance inducing an increase of degrees of
freedom, and it may lead to uncertainty in the output position and motion, which may deteriorate the
performance of industrial applicatioris [72].

These deviations between design and real behavior motivated many researchers in Mechanical En-
gineering [13/[ 14} 17, 21, 25, 28,129,136, 40] 58, (59, 64] to study the revolute joints with imperfec-
tions. Proper modeling of the joint clearances in multibody mechanical system is required to predict
the behaviour of real systems. Different contact models and simulation tools are available [27]. In the

Schneider Electric, 31 avenue Pierre Mendés France, 38320 Eybens, France. narendra.akhadkar@schneider-electric.com.

YINRIA Grenoble, Université Grenoble-Alpes, 655 avenue de I'Europe, Inovallée, 38334 Saint-Ismier, France. vin-
cent.acary@inria.fr

ZINRIA Grenoble, Université Grenoble-Alpes, 655 avenue de I'Europe, Inovallée, 38334 Saint-Ismier, France.
bernard.brogliato@inria.fr



experimental and numerical study of planar slider crank and four-bar mechanism with multiple revolute
clearance joints [25, 20, 20,118], the in uence of clearance on performance of the system is demonstrated.
The degradation of the system's performance is always in the form of vibration, noise, very high reaction
forces at the joints, precision, and accuracy of the output. The dynamic response of the system due to the
joint clearances is more complex and tends to be chaotic in some situatiohs![19,21,51/ 58, 61, 73, 57].
To control this chaotic behaviour, delayed feedback coritral [51], optimization of inertial effects [73], or
redundant actuators that guarantee suitable preload for backlash avoidance in parallel manipulators [47],
have been proposed.

In parallel with multibody modeling and numerical simulation, feedback controllers have been pro-
posed with the purpose of increasing the motion accuracy of systems with clearances. This is called
backlash compensatian the Systems and Control literature [49] 37]. Two major classes of models are
used: dead-zone and hysteresis models, also called static backlash [66,67, 10, 75], which are suitable
for feedback control design but completely neglect the contact/impact dynamics, and dynamic backlash
with compliant spring/dashpot models [48] 38]. Few studies use dynamic backlash with nonsmooth, set-
valued modeld [32, 42]. Static and dynamic models of backlash yield quite different harmonic properties
[12].

Most if not all of the multibody-oriented above studies, as well as some of the control-oriented ones,
use the contact/impact phenomena in the clearances with compliant, linear or nonlinear spring/dashpot
models (this is even sometimes stated as a basic modeling requirenmient [52]), and regularized Coulomb's
friction [73,/41]. A major drawback of such an approach is that the numerical stabilization of contact
forces and accelerations during the persistent contact phases, is not an easy task. Spurious oscillations
may appear in the simulation of these contact modes €sge[23, [35,[65, 50, 27, 73], 122, Figures
4.22, 4.23]). Moreover the regularization of Coulomb's law at zero tangential velaatyig the 2-
dimensional case, replacing the vertical segment of Coulomb's law characteristic by some nite-slope or
sigmoid curve) has to be absolutely avoided since it cannot model properly the sticking modes which play
a signi cant role in the contact dynamics. In addition, contrarily to what is sometimes staled [54], very
ef cient numerical methods exist for the simulation of set-valued characteristics, that we use in this work.
Finally, the contact parameters estimation may be a hard task (especially if both normal and tangential
models depend on several parameters, and impacts are considered), and stiff differential equations may
appear due to very large contact equivalent stiffnesses. Therefore nonsmooth, set-valued models which
use few parameters but retain the major contact dynamics features, may be preferred in many multibody
multicontact applications.

Thimmelet al. [64], discussed the methodology for modeling mechanisms with clearance, friction
and impact within the so-calletbnsmooth contact dynamic methdsCD) introduced by Moreau and
Jean[[43| 495, 46, 30, B1]: the interaction between bodies is modeled with unilateral constraints, com-
plementarity conditions, kinematic or kinetic restitution coef cients, and set-valued frictional models
(like Coulomb's law) [56] 26/, 17]. Following Moreaul [44], the dynamics of rigid multibody systems is
formulated at the velocity-impulse level. The NSCD has proved to be a quite ef cient numerical method,
capable of handling complementarity conditions, as well as impacts and set-valued friction/ laws [3, 63].
Further studies using the nonsmooth contact dynamics methods may be found.in [24, 36, 64]. Careful
comparisons between numerical and experimental data are reported in/[36,64/ 68, 69, 70, 71]: they show
that the so-called time-stepping numerical schemes associated with set-valued force laws, possess very



good forecast capabilities. This motivates us to use the NSCD method, with the enhanced scheme derived
in [2] and available in the INRIA open-source librasycoNos[3]. It is noteworthy that all of the above
analysis (as well as the one in this paper) deal with 2-dimensional joints. Recently the 3-dimensional
case has been tackled in [74] 41]. In ushc a case cyindrical contact/impact models may be considered
[55].

In this article three different examples of the four-bar mechanism (crank—rocker, crank—crank and
rocker—rocker, see Figufé 1) controlled with six different inputs are studied, mainly through numerical
simulations. From a general point of view, joint clearances introduce nonsmooth, nonlinear perturbations
and an increase of the system's degrees of freedom, which render the controlled system underactuated.
Studying the robustness of (otherwise globally exponentially stable) controllers with respect to such hard
disturbances, is a tough task, because analyzing the effects of impacts and friction on the closed-loop sys-
tem's Lyapunov function derivative, is in general quite cumbersome. Our objective is not to derive new
control strategies for backlash compensation, but to study both qualitatively and quantitatively how the
addition of clearances modi es the controlled system's behaviour. Surprisingly enough, collocated feed-
back inputs possess remarkable robustness and drastically improve the system's performance compared
with open-loop control torques.

A Ground ! Ground

N 4

(a) Crank-rocker. (b) Crank-crank. (c) Rocker-rocker.
Figure 1: Three types of four-bar mechanisms.

The article is organized follows: the dynamics are introduced in Sgdtion 2: the local kinematics which
allow to derive the gap functions in Sectjon]2.1, the normal and tangential contact laws in $edtion 2.2,
the Lagrange dynamics in Section]2.3 and the numerical scheme in Jecfion 2.4. Section 3 is dedicated
to the analysis of the four-bar systems with time-dependent, open-loop control inputs. Four different
feedback controllers are studied in Secfipn 4: two Proportional-Derivative (PD) inputs in Secfion 4.1, a
state feedback linearization in Sect[on|4.2, and a passivity-based controller in $edtion 4.3. Conclusions
end the article in Sectidr] 5. Details on the systems' dynamics are given in the Appendix.

2 The Lagrange dynamics with unilateral constraints and Coulomb's fric-
tion
2.1 Modeling of revolute joints with 2D clearance

The local kinematics which allow to derive the unilateral constraints are treated in great details in
[26,/56,3]. Let us provide its formulation for a generic revolute joint with radial clearaasedepicted



on Figurg 2. In an ideal revolute joint, it is assumed that the centers of two interconnected bodies (journal
and bearing) are coincident. A revolute joint with clearance separates these two center points. It does
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Figure 2: Planar revolute joint with clearance in a multibody system.

not constrain any degree of freedom in the mechanical system like the ideal revolute joint. However
it imposes kinematic restrictions on the journal's motion. Thus an imperfect revolute joint introduces
two degrees of freedom in the mechanical system. The radial clearance is de med ag o,
wherer is the radius of bearing ang is the radius of journalrg > r ). On Figurg 2,01 andO;
indicate the bearing and journal centeZs,andC, represent the potential contact points on the bearing
and journal respectively. The;i;j) coordinate frame represents the inertial coordinate system (with
coordinatesX andY). The vectorsc, andrc, 2 R? are denoting the positions of contact points
C1 andC; in the inertial coordinate system. The centers of mass of bodies 1 and@;aaed G,
with coordinateg(X 1; Y1) and (X2;Y>2) respectively. The bodies orientations are the angleand

2. The vectorgg, andrg, 2 R? denote the positions of the bearing and journal's centers of mass,
while ro, andro, 2 R2 denote the positions of the centers of bearing and journal, both in the inertial
coordinate system. The normal and tangential vectors to the plane of collision between the bearing and
the journal are de ned byn;t) 2 R?. Note that the unit vectar has the same direction as the line of
the centers of the journal and the bearing. The orientatianisfchosen such that it always acts inward
from journal center to bearing center. The signed distance (or gap function) is calculated as:

ON = CiCon=c¢c 0O501n (l)



The magnitude of eccentricity (clearance) ve€@g0; is denoted byj O,04jj and its orientation is given

by . The unit normal vecton is given as = %, with:
| I . 1 . o . .
0201=(X1+§1c051 X2+§2cos 2)|+(Y1+§1sm 1 Y2+§23|n 2)] (2)
n=cos i+sin j; t= sin i+cos | 3)
! !
X1+ Zcos;, Xy+ 2cos Y.+ 2 sin Y, + 2 sin
cos = 1721 227 2 2 . gn = 12> 1 272 2 (4)
J1O204]j 10204jj

If we denote the generalized coordinates of each bodyag X;i;Yi; i)",i = 1;2, then we obtain that
On = On(an; o). We also havec, = rg, + G1C1 = rg, + G101+ O1Cq andrg, = rg, + G2Cy =
rg, + GO + O(ZCZ. Differentiating these expressions with respect to time yields :

Ve, = §reu* q(GiC1) = §re, + §(G101) + §(01C1)

Ve, =efire, + §(G2C2) = §ro, + $(G202) + $(02C2) ©)
which leads to: 8 |
e, = 4 (FsinCa) rasin( )
Ya+(Zcos(1) ricos())4 )

Xo (%sin(2) rasin( ) =
Yo+ ('%cos(2) racos()) -
whereVg;; (i =1;2) 2 R? are the absolute velocities of the contact points. Consequently, the contact
points relative velocity is expressed in thel local frame as:

.E Ve,

U Ve, Ve)Tn
Ut (Me, Vc,)'t
From (6) IandK]?) the normal and tangential components of the relative velocity can Qe calculgted:
Un _ cos sin LsinA cos sin l2sinB o
Ut sin  cos LcosA+ry  sin cos 2cosB 1 ®

(8)
whereA=( 1 ),B=(. ).

2.2 Normal and tangential contact laws

The contact force is denoté®l = (Ry;Rt1)T 2 R? in the local frame(n;t). Due to the impene-
trability assumption one hag (g) > 0. We also neglect adhesive effects sotRat > 0. f Ry > 0
then we impos@y (q) = 0, and whergy () > 0, the normal contact force must vanisle. Ry =0
(no magnetic or distance forces) [1,3, 7]. These conditions yield a complementarity condition denoted
compactly as:

06 gn(? Ry > 0 9)
The normal contact law at the velocity level is expressed as :
06 Uj+eUy ? Ry >0 ifgu(q=0 (10)



whereU{ = r gn(g)g" is the relative velocity after the collisiot)y = r gn(g)a is the relative
velocity before the collision, ang 2 [0; 1] is the restitution coef cieﬁ The tangential contact law is
based on Coulomb's friction law and it is de ned locally at each contact p@pty C>). In the 2D case
Coulomb'’s friction law is as follows:

Rt 2 jRnjsgn(Ur) (11)
where > 0is the coef cient of friction andsgn( ) is the set-valued signum function wiggn(0) =
[ 1;1]. Itis noteworthy that the basic Coulomb's law can be easily enhanced with static and dynamic
friction coef cients, varying friction coef cient (with Stribeck effects), or micro-displacements during
sticking modes, while staying in a set-valued context that is suitable for a proper time-discretization
including sticking modes [3, 83.9].
2.3 Lagrangian formulation with bilateral and unilateral constraints
Let us consider a Lagrangian mechanical system with generalized coordinate yett&", and
subjected tan constraints, wittmy, holonomic bilateral constrainty, = 0; 2 E, andmy unilateral
constraintgy > 0; 21 ,m = my+ my = JEj+ jlj , and with 2D Coulomb friction. The Lagrangian
formalism of guch a system is as follows [3] 56],
q(t) = v(t);
M (a())v(t) + F(ta(t); v(t)) = Gy (a(t)Rn + GT (a(t))Rr;
gv(at))=0;  2E;

oy (at)) > 0, Ry >0, Ry gy(at))=0; .

Uy(t")= e Uy(t ); if gy(a(t)) =0 andUy(t )6 0;

Rr 2 Ry sgnUr); if gy (q(t)) =0: (12)
wherev(t) is the vector of generalized velocitieB] (g) 2 R" " is the mass matrixF (t;q;Vv) =
C(g;v)v g(g) B (t;q;v) 2 R" is the vector of generalized forces(q;v) 2 R" is the vector of
Coriolis and gyroscopic forceg(q) contains forces which derive from a potental2 R" is the input
matrix, (t;q;v) is the scalar control torque applied at joiht (see Figur{]3 belowGn () 2 R™ "
andGt(g) 2 R™ " are the linear maps of local normal and tangent frames at the contact pants (

Ur = Gr(g)gandUy = Gy (0)q, see[(B)).

In the sequel only unilateral constraints will be considered, since bilateral constraints are eliminated
by coordinate reduction. Details on the dynamics of the four-bar systems are provided in Appendices A,
BlandC.

Remark 1. (i) The mathematical well-posedness of the Lagrange dynamics|in (12) has been shown in the
frictionless case in[15, 16, 53] 5]; in the case with friction se€ [6, §2). When there is no clearance,

n = 1 and the system is fully actuated. When one (resp. two) clearance is preseft,(resp.n = 5)

and the system becomes underactuatd. Various contact/impact models are compared[in/[22]. It

is not obvious to determine which model is the best. The approach chosen in this article seems to be a

When friction is present during impacts, there is in general no reasoe telbuld be upper bounded by 1, sée [7, Chapter
4]. Moreover inertial couplings may introduce kinetic energy increase for nearly elastic impacts. Finally dynamical singularities
like Painlevé paradoxes may occur during sliding motions [7, Chapter 5]. We have not noticed such issues in the particular
cases treated below, with small friction coef cients.



suitable compromise for many physical effects occurring in joints with clearance, and which are quite
dif cult to encapsulate in a single contact/impact model with a reliable numerical method (dissipation at
impacts, friction, conforming/non conforming contacts). As alluded to above it may be enhanced while
staying in the same overall rigid body framework.

2.4 The numerical integration method

The numerical time-integration scheme used in this article is an event—capturing time-stepping method
mainly based on the Moreau—Jean time—stepping scheme [43,]145,/ 46] 30, 31]. As we said in the intro-
duction, the method uses a formulation of the dynamics at the velocity/impulse level, that enables a
very robust numerical time-integration of systems with a lot of impact events. Contrary to event-driven
schemes, the events are not accurately located in time but integrated within the time—step. Although it
leads to robust schemes, the treatment of the constraints and the impact law at the velocity level yields
drift at the position level. When we study multibody systems with clearances in joints with unilateral
contact, we need to keep the drift of the constraints as small as possible with respect to the characteristic
lengths of the clearances.

This is the reason why we use a scheme that satis es constraints both at the velocity and position
levels. It is an extension of the Moreau—Jean scheme together with the Gear—Gupta—Leimkuhler (GGL)
method to systems with unilateral constraints and impacts [2]. Applying directly the GGL approach to
unilateral constraint may yield to spurious oscillations at contact that depend on the activation procedure
of the constraints at the velocity level. [ [2], this issue is xed by consistently activating the constraints
within the time—step in an iterative way. Especially, we want to avoid the projection onto a constraint if
the associated constraint at the velocity level is not activated. The so-called “combined scheme” is based
on the iterations denoted byof the following two steps :

1. Theprojection st%ps based on the solution of the following system

M (tk+ )(Vks1 k)  hFke = G(Ok+1)Prsa;

Ok+1 = Gk + hvie + G(Gk+1) ke1;

Uks1 = G7 (Gs1) Vicsn ;

Ok+1 = 9(Gk+1gs

06 Uyk+1 * Uk ? Puker > 0
Prkst 2 Pyysr S9NUry)

Oer =05 ars T Pygss > 0

06 g1 ? 41 > Ootherwise

(13)

forall 21

for a given index set of active constraints. The time—step is denotechbgnd the notation
Xk+ = (1 )Xk + Xk+1 is used for 2 [0;1]. Compared to the Moreau-Jean scheme, the
multiplier 41 is added to improve the constraint drift. Note tht, is an impulse which
remains always bounded when an impact occurs.

2. Theactivation stegcomputes the index sét of active constraints by checking for a given value
of ge+1 if the constraint is satis ed or not. Starting forh? = ;, at each iteration, the activation



performs the following operation
I =1 [ 21 g 60 (14)

The iterateq0k+1 ; Vk+1 ) Of the solution depend on the iteration numberIn order to avoid useless
complexity in the notation, we skip the superscriptvhen there is no ambiguity. The steps 1 and 2
are iterated until the index sét is constant. The algorithm can be extended straightforwardly to the
frictional case.

The contact events are not detected with high precision in such event-capturing methods, and the
number of calculated impacts dependshomn the next section the choite= 10 ®sis chosen. Compu-
tations reported iri |3, Table 14.2] show that this is a reasonable time step and $nisihet necessary,
because the collisions which are not detected have negligible in uence on the system's dynamics (in
particular on the kinetic energy loss). The simulations in this article have been led with the code imple-
mented in the INRIA open-source softwaEoNO )}

Remark 2. Two major classes of numerical methods exist: event-driven and event-capturing (or time-
stepping) schemes. They both possess advantages and drawbacks. In case of systems which undergo a
large number of events (like stick/slip transitions and impacts), event-capturing methods are preferable
despite their low-order([3, 63], because event-driven strategies rapidly become cumbersome to imple-
ment and too time-consuming. Moreover event-capturing methods have been proved to converge.

2.5 Analysis methodology

Let us consider a four-bar mechanism (see Figuire 3(a)-(b)) with bodiesrmakengthl;, inertial;,
16 i 6 3. Animperfect joint is de ned by a unilateral constragjt= (¢ O Oj N> 0, =2
or 3, whereg; is the radial clearance at the imperfect joint. The four-bar mechanism with clearance in
one revolute joint is described by three generalized coordimptef 1; »; 3]", and with clearance in
two revolute joints it is described by ve generalized coordinates] 1; 2; 3;X2:Y2]". The four-bar
mechanism is actuated at the join{d;). We consider jointsl; andJ4 to be perfect revolute joints
while the jointsJ; andJ3; may be imperfect with radial clearancgandcz. The in uence of different
clearance sizes; andcs, coef cient of restitution &) and coef cient of friction (') on the mechanism
performance is studied. Results are compared with the cases without clearance and without friction. The
presence of clearance in the revolute joint can lead to variation in the initial conditions and this variation
depends on the value of the radial clearance. To this aim, in the rst step we study the in uence of the
initial conditions on the system'’s long term behaviour with perfect revolute jointsk Liet be de ned
aﬂ kX'k1 =maxy1.101JX (t)j. The percentage relative error in the angular positi{0) is given as:
ki Ok

k 1 (t)ky

where ¥ (t) is the angular position of links with the reference initial condition, aj¢t) is the angular
position of links with different initial conditions. We plot the isolines of the percentage relative error
e with 1(0) and 4(0). In the second step, we analyze through numerical simulations how much the

€ = 100 (15)

Zhttp://siconos.gforge.inria.fr/
5The rstinitial period[0; 1]s is not included in the in nity norm in order to eliminate the transient period, and concentrate
on the steady-state behaviour of trajectories only.
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(a) Clearance in joini,. (b) Clearance in join, andJs.
Figure 3: Four-bar mechanism with clearance in revolute joints.

presence of clearances deteriorates the system's dynamical behaviour. The percentage relative error in
the angular positions; and 3 is given as:

or may KoM p®k

p2f 1;3g k 9(t)ky

where g’(t) is the angular position of links without joint clearance anﬁkﬂt) is the angular position of
links with joint clearance. The contour plot with different levels of isolines represents the variation of
error in the angular position. In the second step, the initial conditions remain constant and only radial
clearancesc, andcs) are varied for different values of coef cients of restitutien and of friction
For all contour plots, simulations are carried out for ev@®mm increment in joint clearance and for
every0:1 increment in coef cient of restitution. Therefore the ermallows us to analyze the loss of
performance of a controller when clearances are added, and is different from the usual tracking error that
is widely used in the Control literature. It measures the proximity between the cases with and without
mechanical play.

100 (16)

3 Open-loop control

In this section two open-lo@dnputs are considered: a constant torque= 6:0 N m and a sinu-

soidal torque » = 9:0sin(0:75 t) N m, applied at the joinl; in counter-clockwise direction. Since
our main goal is comparison of feedback controllers, and since the results we obtained for the three types
of four-bar mechanisms were quite similar, only the crank-rocker case is presented. Let us consider a
crank—rocker mechanism as on Figlure 1(a), where the inpullirdtates fully 860 ) and the output link
I3 oscillates through angles,,, and 3,.,.. Geometric and inertial properties of the crank-rocker four-bar
mechanism are given in Tat@ 1. The initial conditions af@®) = 1:571rad »(0) = 0:3533 rad

3(0) = 1:2649 rad 4(0) = »(0) = 3(0) = 0:0rad=s. The coordinates of the center of gravity
of link 2 areX, = 1:8764 m Y, = 1:6919 m Parameters used for the dynamic simulation are given
in Table[2. The deviation in the system's performance is studied with the percentage relative error in
angular positioreg in (15) to nd out the sensitivity to the initial conditions. The results are depicted on

“The name open-loop control means that the torgigea function of time only, with no position or velocity feedback.



Table 1: Geometric and inertial properties of the crank—rocker four-bar mechanism.

Body Nr. Lengthn] Mass kg] Inertia [kg m2]
1 1.0 1.0 8:33 10 ?
2 4.0 1.0 1:33
3 2.5 1.0 521 101
4 3.0

Table 2: Parameters used in simulations.

Nominal bearing radius,  0:06 m Coef cient of restitutione;,  [0; 0:9]
Radial Clearance, (orcz) [0:0; 5 10 3]m Time steph 110°%s
Coef cient of friction f0:0; 0:1g Total time of simulationT 10 s
2.0 2.0 T BUT T
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(a) Ideal case, = 1.
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case, = 2.

Figure 4: Crank-rocker with ideal joints: contour plotegfwith 1(0) and —(0).

Figurg 4. The major conclusion is that the system's sensitivity w.r.t. initial conditions changes drastically

when the constant torque is replaced by a sinusoidal one: Higure 4 (a) shows an ordered behaviour with

horizontal stripes (zero gradient ef( 1(0))) and small gradient ofy( 4(0)), while Figureﬁh (b) shows

a disordered behaviour with a high gradientegt 1(q); +(0)) between the isolines, indicating high

sensitivity.
Let us now analyze the case with one clearance in jbintThe numerical simulations are depicted

on Figure$ F, 6 arid 7. On Figdrg 6, the trajectorig$) for various clearances, as well as the variables

on (g(t)) andgr (q(t)) are depicted. The normal contact folRg (t) is also given for the case without

friction. Finally the isolines of the percentage relative erras given in[(1p) are plotted and depicted on

Figureg[$. The results have been obtained, as indicated in[Table 2, for the range of values of restitution co-

ef cient e, 2 [0:0; 0:9]. Only one set of simulations fex = 0:0is shown on FigurE]|6, because changing

the restitution coef cient did not change the results signi cantly in agreement with the results on Figure

10



© o o o o o
= wu (2] ~ -] ©
© o o o o o
B (4 (2] ~ <] ©o

o
w

Coefficient of Resitution (e, )
o
®

Coefficient of Resitution (e )

o

N

o

N
T

=)
S

2
=)
i
€

o
o
L
o
o

1 2 3 4 5 o 1 2 3 4 5
Radial Clearance c, (mm) Radial Clearance ¢, (mm)
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[5. The major conclusions aré) For the input torquey, the impacts and so the restitution coef ciesnt
play a negligible role for xed clearance (vertical stripes on Figure 5). This may be attributed to too
small values of the pre-impact velocities, and to a small number of collisions (see the giQtepion
Figureq 6 (a) (b) (c)). Figurgg 7 also illustrate that the rebound/contact inside the bearing is con ned to
small collisions mainly on one side of the bearing, almost independengly ¢f) The maximum values
taken bygy (q) after impacts are most of the time really smaller than the clearance (5mm on Kifures 6
(@) (b) (c)), in agreement with Figuré {@ii) The combined projection scheme in AlgoritftRallows to
simulate persistent contact phases without spurious oscillations, and very small drift. This is particularly
visible on FigureE]G (a)-(c) (saw (q(t)) between the peaksiv) For the torque », the system's trajec-
tories (see 1 on Figurd §(c)-(d)) start deviating from a speci ¢ con guration marked®ason the plot
and after this point the system starts behaving randomly. This is common behaviour observed in systems
with unilateral constraints and impacts (®eg. [76, Figures 11, 12], see [B9,/11] in the broader context
of bifurcation and chaos analysig\) Surprisingly enough, the number of impacts with the sinusoidal
input torque » is smaller than with; (seegy () on Figure$ B(a) and (c)fvi) As seen on Figure| 6 (b),
the system undergoes few stick/slip transitions in the jdingr (g(t)) is almost always positive) but
many variations of the tangential velocity at contdeti) For the driving torque;, the presence of small
friction does not modify much the dynamical behaviour (see Figure Bafid) on Figure$ B(a)-(b)).

Let us now consider now the crank—rocker mechanism with clearance in JoiatisdJ3 (see Figure
[3(b)). The isolines of the percentage relative error as given in (16) are plotted for the radial clearance
andcsz. The results for the input torquegand » are depicted on Figufé 8(a)-(b). Some comments arise:
() In case with torque 1, the revolute jointd3 with clearancecz has more in uence on the system's
performance as compared to joiit with clearancec,. This may be attributed to the location of the
applied torque.(ii) As expected the torque yields unpredictable behaviour with high sensitivity of
e(cy; c3) (Figure[8 (b)). We infer from Figurdg 4 (b) ahfl 8 (b) that the system actuated wishquite
sensitive to both initial data and clearances values. The simulations for Figure 8 (b) were led over
[0; 100]sin order to capture the long-term behaviour of the trajectories (as seen on Fipures 6 (c) and (d)
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with c3 = 0, trajectories with and without clearance remain close one to each other éor the

10s).
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4 State-feedback control

The main conclusion from the foregoing section is that open-loop controllers may easily lead to un-
predictable behaviour with high sensitivity to both initial data and clearance values, when non-constant
torques are applied. With such a high sensitivity, it is hopeless to try to deduce some universival con-
clusions on the relative in uence of the parametggs ;¢ »; ¢c3) on the behavior of the mechanism. It
is of interest to investigate if adding a collocated feedback action atJeimay improve the system's
dynamical behaviour when clearances are present (the answer for the no-play case being trivially pos-
itive in case of the two nonlinear controllers which guarantee global exponential Lyapunov stability of
the tracking error system). We will in the following consider four types of feedback controllers with in-
creasing complexity: proportional-derivative (PD) plus gravity compensation, with and without desired
velocity, feedback linearization, and passivity-based inputs. There are many other types of controllers
that have been derived for Lagrangian systems, starting from the basic PD and PID controllerg, see
[60,[33,4/ 34, 9]. In this study we chose to focus on few of them only, for obvious reasons.

4.1 Proportional-Derivative (PD) controllers
In this section two different types of PD controllers are considered:

()= Kaa Ki(1 o () (17)
and

A 1na)= Koo 41) Ki(: ) (18)
whereK ; andK ; are positive control gains.

Since the system ifn|(8) is non-linear, PD controllers without any kind of feedforward compensation do
nota priori guarantee the global asymptotic trajectory tracking of the dynaini¢s (37)[with (1[7)]or (18).
However the input 4, guarantees the global practical stability [9, Theorem 1]. The choice of the gains
may be made by varying the gains and computing the maximum trackinggreor 1 f in each case,
where the desired angle has been choserfm =6:0sin(0:75t ) for the crank-rocker and the crank-
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crank, §(t) = 3:0+2:5sin(0:75t ) for the rocker-rocker mechanisms. The maximum tracking errors on

[0; 10]sfor the crank-rocker, crank-crank and rocker-rocker four-bar mechanisms are plotted for different
values of the control gains 1 andK » on Figurg 9. As expected from![9, Theorem 1], the tracking error
decreases &1 andK ; increase, and quickly attains an almost constant value for the three mechanisms
and both controllers. It is interesting to note that the crank-crank mechanism shows the largest tracking
error: this may be due to the fact that the nonlinear tofgye;; ) in ) has bigger magnitude than

for the other two mechanisms. Also the inpytpermits to decrease signi cantly the tracking error for
large enough gains, whileg; cannot: this demonstrates the usefulness of the feedforward velocity term
Ko4in ). For the sake of comparison between the various feedback controllers these gains will also
be used for the PD-part of the nonlinear inputs of Sectjons 4.2 and 4.3. Thus they have to satisfy the
conditions stated in Appendjx|D. The choice has been madé;as 2000 andK, = 200, because

larger values do not improve the performance as shown on Higure 9. The cdDstattie Lyapunov
function [42) can be choséh = 10.
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Figure 9: PD control: maximum tracking erroi(t) 1(t) vs.controller gains.

4.1.1 Crank-rocker mechanism

Let us consider a crank—rocker mechanism with clearance in one and two revolute joints (see Fig-
ures| 1(a) and]3(a)-(b)). The Lagrange dynamics is given as in Appeifdices[B and C, respectively, and
the system is underactuated with collocated input at jdint The geometric and inertial properties,
parameters used for simulation and initial conditions are given in Sgdtion 3. The isolieds ()
which allow us to compare the cases with and without clearances, are depicted orf Figure 10. They were
found to be identical for boths and 4, which shows that the addition of(t) in 4 may improve the
tracking capabilities, while the system'’s precision deterioration is unchanged when clearances are added.
Only one set of simulations is shown because changiramd did not change the results signi cantly.
Comparing Figurefs|8 (b) and]10 (b) shows a signi cant discrepancy between open-loop and state feed-
back controllers. Actually, the Lyapunov stability of closed-loop systems with state feedback controllers,
drastically changes their dynamical behaviour when clearances are present. It is noteworthy that the co-
ef cient of restitution plays no role in the variation ef(see Figur¢ 70 (a)), and there exsist a symmetry
ofthe behaviour with respect to clearancgsandcs (see Figuré 10 (b)). From Figure|12 we conclude
that, similarly to the case of input, the journal spends most of the time almost in contact with the
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bearing, with very small rebounds excepted in few cases where the journal crosses the whole bearing,
when the desired trajectory changes its direction (see Higlire 12 (b)).
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Figure 10: Crank-rocker with PD control: contour plotepf 2 f 0:0;0:1g, 3 and 4.
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Figure 11: Crank-rocker with PD control; and™ (e =0:0, =0:1, = ).

4.1.2 Crank-crank and rocker-rocker mechanisms
Let us consider a crank-crank mechanism with clearance in one and two revolute joints (see Figures

[i(b) and B(a)-(b)). The geometric and inertial properties are given in Table 3. The control gains are
Table 3: Geometric and inertial properties of the crank—crank four-bar mechanism.

Body Nr. Length ] Mass kg] Inertia [kg m?]

1 1.2 1.0 1:20 10 1
2 1.2 1.0 120 101
3 1.2 1.0 1:20 101
4 1.0 - -

unchanged. The initial conditions arg(0) = 1:658 rad, »(0) = 1:607 10 “rad, 3(0) = 1:488 rad,
4(0) = »(0) = 3(0) =0:0rad=s. The control performance are depicted on Figs 1@@ 14. The
counterparts of Figurgs [LO and 13 for the rocker-rocker mechanism are not shown because they are quite
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similar to the other two.
4.1.3 Conclusion on PD control

It is visible on Figure$ 10 and [L3 thé) the closed-loop behaviour of both PD controllers[in| (17)
and [18) is predictable (the restitution coef ciegt has negligible in uence ore, while a symmetric
in uence of ¢, andcs is observed)(ii) the values ofe are however much smaller than those fer
indicating that the PD feedback has a signi cant in uence on the system's dynamics in the presence of
clearanceg(jii) the tracking error is decreasing whenis used instead of; (see Figurg|9) however this
has little in uence ore: both controllers gave the same results on Figurés 10 gn@)30m Figure$ D,
[10,[11[ 18 anf 14 it follows that the crank-rocker mechanism provides better performance than the crank-
crank one, both foe and the precision at the velocity sign changes (see the zoomed parts on Figures 11
(a) and I#)(v) as expected the loss of precision occurs when the desired trajectory changes direction
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(see Figuré 14). This is what motivated some extensions of the PD controllers to improve the accuracy
[32].
4.2 State feedback linearization
The smooth part of the dynamic equations of the four-bar mechanism with minimal coordinate is:
M(1)®1+N(1a)+09(1)= s (19)
Details on how to obtain this minimal coordinate dynamics are given in Appéndix A. Let us choose the
control torque as:
s( 5 aU)=M(2)U+ N(1;52)+9d( 1) (20)
The control law[(2D) is a simple instance of state feedback linearization. Birfcg) > 0, the closed-
loop system9)0) reduces to the double-integra&ier U. The inputU is chosen as PD controller

U(1;49;t) = K11 Kog+r(t). Fora given desired trajecton(yf(t); _g(t)) one sets (t) =
() + Kz_g‘(t) + K1 g’(t). Then the tracking error satis es the closed-loop dynamics :
(1 CfO)+ Ko(a 4@+ Ka(2 (1) =0 (21)

which is globally exponentially stable, with a convergence speed depending on the choice of the con-
troller gains. The controller gains have to satisfy the conditions stated in Apgehdix D. Since the controller
may be seen as a PD input with some nonlinearities compensation, the gains will be chosen as for the
PD controllerK 1 = 2000 andK , = 200 for the sake of comparison.

For the sake of brievity and since the results we obtained were quite similar for the three mech-
anisms, we shall consider in this section a crank-rocker mechanism with clearance in one and two
revolute joints (see Figurdg 1(a) and 3(a)-(b)). The desired trajectory of the input link is given as

(1’ = 6:0sin(0:75t ). The geometric and inertial properties, parameters used for simulation are given
in Tables[1] 2, the initial conditions are as in Secfipn 3(0) = 1:571rad »(0) = 0:3533 rad

3(0) = 1:2649rad 4(0) = » = —3(0) = 0:0rad=s. The numerical simulations are depicted on
Figureq I5[ 16 and 17 for the case with clearances in one and two revolute joints. On[Figure 16, the
trajectories of the input links(t) for various clearances, as well as the Lyapunov functi¢n) in (42)
are shown. The results have been obtained for different values ®f[0:0; 0:9] and for two different
values of =0:0and = 0:1. However only one set of simulation is shown because chargiagd
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did not change the results signi cantly. Some comments ais€ompared to the PD controller, the
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=0:1, = 5).

errore is smaller by a factor 2 for large clearances and a factor 5 for small clearances (see [Figures 10
and I%). This tends to indicate that the feedback action and the compensation of nonlinearities both have
a signi cant in uence in the dynamics with playii) The Lyapunov function shows persistent variations

after an initial exponential decrease, see Fifuie 16: this is due to the impacts which make the velocity
jump, and thus induce state re-initializations all along the system's motion. It is however a tough task
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Figure 17: Crank-rocker with state linearization control.

to analyze conditions under whigh(z) remains bounded despite of impacts, because it involves an in-
terplay between the positive jumps at impact times and the exponential decrease between impacts (while
persistent contact phases of motion should also be taken into account in a theoretical afi@)y3is®e
tracking error is reduced compared to the PD control, siic2 [ 4;4]for 4 while 7 2 [ 1:3;1:3]
for 5 (see FigureEB (b) a@ll (b)). AlSp with one clearance is smaller than with two clearances,
compareV (z) on Figureg 16 (a) and (b)iv) Increasing the gaink; andK, allows one to consider
larger pairs of clearancésy;; c3) for the same erroe, as shown on Figufe 17 (a)v) The controllers s,
4 and s possess quite similar shapes and magnitudes, as depicted on[Figure 17 (b). Hewexky

take larger values during the transient period. The absence of feedforward tefiméuces a delay in
its reaction to impacts, but, behaves surprisingly close to the state feedback linearization scheme.

It is visible from Figurg 1p that the three mechanisms, when controlled with a state feedback lineariza-
tion algorithm, behave in the same way.
4.2.1 Conclusions

The feedback linearization control schemes clearly supersede the PD controllers both from the point
of views of tracking error reduction (which is a well-known result) but also for the erreduction.
The second set of results (Figufe$ [10, 13[arjd 15) means that compensation of the smooth nonlinearities
allows to reduce the closed-loop system's sensitivity w.r.t. the presence of clearances.

4.3 Passivity-based control

Passivity-based controllers have become quite popular for the control of nonlinear mechanical systems
[8]. Let us investigate now the behaviour of the so-called Slotine and Li controller with xed parameters,
wPich is given in the no-clearance case|(37) as:

o Lu)=M(1) f) (2 ) +C(uo) 4 (1 ) +9(1) Kv

va(a 4O+ 1 1)
(22)

whereC( 1; 4) 4 = N( 1; ). The control gairk is similar to the derivative control gaik, and the
control gainK is similar to the proportional control gaik1. Thus the control gains are chosen as:
K =200 and =10 . The closed-loop dynamic@ZB?) readsvbé 1)v+ C( 1; 4)v+ Kv =0,
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and= = KR
4.3.1 Collocated control of crank-rocker mechanism

Once again for the sake of brievity we shall consider in this section a crank-rocker mechanism only.
The geometric and inertial properties, parameters used for simulation and initial conditions are as above.
The numerical simulations are depicted in Figurgd I8} 19, 20 and 21, and in[Tableg|4 and 5. The results
have been obtained for different valuesepf2 [0:0; 0:9] and for two different values of = 0:0 and

= 0:1. However only one set of simulation is shown because changirapnd did not change
the results signi cantly. Some comments are as follo@is:Figured 15 anfl 18(a)-(b)) show that the
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Figure 18: Crank-rocker with passivity-based control: contour plet of2 f 0:0; 0:1g, 6

passivity-based control algorithm is slightly less sensitive to the clearances than the state linearization
one. However the tracking errors are similar for both controllers (see Figures 16](b), 19 (b) and Tables
[4,[5.[8). (i) For the same precision, the control torque has smaller peaks magnitude when compared to
feedback linearization, as shown on Figuré 20 and in Tdble 4 for various @@insVhen the gains are
decreased, the maximum tracking error remains almost identical for both controllers, but the passivity-
based input maximum value decreases much more than that of the state linearization input ($ee Table 4).
This may be explained by the fact that passivity-based controllers do not totally compensate the Lagrange
dynamics nonlinearities, and thus induce less solicitation of the input tofgerhe evolution of the
Lyapunov-like functiorV (v) de ned in {44) is depicted on Figufe 19 (a) and (b). It shows that the case
with one clearance has less impacts than two clearances (similarly to the state linearization on Figure
), and it seems that some periodic nonsmooth motion exists in stea@-élauléigure shows the

typical behaviour inside a clearancéje andY;j» denote the relative position @, inside the bearing):

there are few impacts and the system tends to evolve on the bearing's surface. This once again explains
why for such desired trajectories, the restitution coef cient does not play a signi cant role. Comparing
Figureq 2]l anfl 12, we infer that compensating for smooth nonlinearities does not modify signi cantly
the journal center's motion inside the bearing: most of the time the system evolves with small values
of the gap function.(vi) The in uence of the desired trajectory frequency is reported in Table 5. The

50Once again, proving such assertions is far from trivial and is not tackled here.
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Figure 19: Crank-rocker with passivity-based contrgl:V (v) and ™ (e, = 0:0,

torques 5 and g show comparable behaviour when the frequency is increased. High frequencies induce
large maximum tracking errors because the initial efd0) is larger due to the larger desired velocity
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Figure 20: Crank-rocker: comparison of control torqueand .

Remark 3. (i) The contact/impact model has a great in uence on the computed journal center motion
inside the bearing[[22, Figure 4.24]. As alluded to above, the model we chose together with the NSCD
method of [[2] allows to treat in a clean way the contact phases, avoiding non physical oscillations.

Choosing compliant models would yield quite different journal center trajectories.
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Figure 21: Crank-rocker with passivity-based control: journal center locus for joint 2.

Table 4: Crank-rocker: in uence of control gains on the maximum tracking err¢t;di®]sand control
torque €2=c3=5:0mm).

Max.Tracking | Max.Control

Sr.No. | Type of controller Control gain error (Degree)| torque (Nm)

Feedback K 1 = 2000; K » = 200 1.34 818.29

1 Linearization s
Passivity-baseds | =10 ;K =200 1.3 724.45
Feedback K1 = 500: K » = 100 2.94 782.59

2 Linearization s
Passivity-baseds =5 ;K =100 2.87 604.47
Feedback K, =100:K 5 = 50 9.8 697.69

3 Linearization 5
Passivity-baseds =2 ;K =50 9.21 511.39

(i) A nonlinear feedback controller is consideredlin|[57, Equation (30)], and applied to a slider-crank
mechanism. Contact is modelled with a compliant model. Numerical simulations show possible chaotic
behaviour. It would be interesting to redo the analysis in this paper on the same slider-crank system, to
investigate in which way the contact model may change the conclusions, and whether or not the above
feedback controllers suppress or not the chaos.

4.3.2 Non-collocated control of crank-rocker mechanism
All the above results are for the collocated case, we apply the control torque at joidy and we
measure 1 and 4. Itis however possible to use the expression@h (27) in order to obtain functipn3
and 4( 3; 3). Inthe ideal case, using the direct measure;oénd 4 to compute g, or measuring 3
and _g, then calculating 1( 3) and 4( 3; 3) and using these expressions to compute a non-collocated
input 7, strictly provide the same results because 1( 3); =( 3; 3)) = &( 1; 14). When clearances
are present in jointd, and/orJs, then 7 and ¢ differ since the expressiong( 3) and 4( 3; 3) are
no longer valid. It is well-known that non-collocation deteriorates the control performance, and may
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Table 5: Crank-rocker: in uence of frequency on the maximum tracking errdidphO]sand control
torque.

Max. Tracking error (Degree) Max. Control torque (Nm)

Frequencyf() Ideal Joints Clearance ily; J3 Ideal Joints Clearance inly; J3
C2 = ¢3 =5:0mm C» = c3 =5:0mm

5 6 5 6 5 6 5 6
1.5 0:004 | 0:004 | 3:16 3:2 23 10° [ 23 10° | 36 10° | 2.3 10°
4:0 0:005 | 0:005| 5:86 6:0 1.6 10* [ 1:5 10* | 1.7 10* | 1.5 10°
10.0 0.014| 0:016 | 116 12:4 93 10° | 92 10* | 98 10* | 9.4 10°
50.0 0:176 | 0:221| 1267 [ 1359 |11 10° |84 10° | 1:32 10° | 91 10

even destabilize the closed-loop system. Results for the non-collocated input are depicted on Figures
and, for §(t) = 6:0sin(0:75t ). They show a big increase in bothand the tracking error,
compared with the collocated control: on Fig 19 we see®{t)l 2 [ 1; 1] degrees, while on Figure

71(t) 2 [ 12 6] degrees. In-between the peaks the tracking errorfare also larger than withg.

Figure 22: Crank-rocker with non-collocated passivity-based contrdtacking error.

@ - (b) .
Figure 23: Crank-rocker with non-collocated passivity-based contra.
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4.4 Conclusions on sectior@ @..2 a@.B

Table[6 summarizes the tracking errors obtained with the above desired trajectories, for the torques

3, 4, 5and g, the three mechanisms and three cases (no play, one clearance and two clearances). In
view of these data and the above results, the passivity-based contgdeslightly better than the state
linearization 5. The two PD controllers, though they allow one to avoid the high sensitivity issues of
the open-loop inputy, yield too large tracking errors to possess practical interest in case precision is
required (though the tracking error is drastically decreased using the velocity feedforwayd Table
summarizes the results obtained for the maximum tracking errors with the four feedback controllers
applied to the three mechanisms. Several comments arise, some of which just con rm previous ones: the
compensation of smooth nonlinearities drastically improves the accuracy in all cases, for xed control
gains the PD controllers accuracy varies signi cantly depending on the system, while it does npt for
and g, for 5 and g the maximum tracking error doubles when a clearandg & added. We see also
from Figureg Ip (b), I3 (b), 15 (b) apd]|18 (b) that the performance decrease between the no play/play
cases, is qualitatively the same for all collocated controllers in the presence of two clearances, while
a small distortion occurs for the non-collocated input 23 (b). This shows that, at least for the chosen
sinusoidal desired trajectories, a good predictability exists in such nonsmooth systems.

Table 6: Maximum tracking error ofi; 10]swith feedback controlK ; = 2000, K, = 200, K = 200
and =10 .

Maximum tracking error (degrees)
Four-bar mechanism Control torque . Clearance in joints
Ideal Joints . .
C; =3:0mm | ¢ = c3 =3:0mm

3 82.5 84.2 85.2
4 2.98 5.68 6.68
Crank-rocker - 0.003 07 12
6 0.003 0.66 1.12

3 103.3 105.22 106.92

4 25.4 27.32 29.02
Crank-crank 5 0.004 0.73 131
6 0.004 0.68 1.22

3 34.57 36.07 37.07
4 1.79 3.29 4.29
Rocker-rocker 5 0.003 0.67 1.26
6 0.003 0.61 1.19

5 Conclusion

A general methodology for modeling and simulation of multiple revolute joints with clearance in
planar four—-bar mechanisms has been presented and discussed in this work, and used to compare the ro-
bustness properties of several trajectory tracking feedback controllers (proportional-derivative, state lin-
earization, and passivity-based control algorithms) with respect to such hard disturbances. The method-
ology is based on the nonsmooth dynamical approach, in which the interactions of the colliding bod-
ies (journal and bearing) are modeled with unilateral constraints, restitution coef cients and Coulomb's
friction. The combined projected Moreau-Jean event-capturing (time-stepping) scheme defived in [2] is
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used to solve numerically the contact-impact problem. Itimproves signi cantly the drift issue at the posi-
tion level and allows to simulate persistent contact phases without spurious contact force and acceleration
oscillations. It is noteworthy that the contact/impact models may be easily enhanced (taking into account
static and dynamic friction, Stribeck effects, micro-displacements during sticking modes) while using
the same dynamical and numerical framework. The major conclusions of this work is that collocated
feedback improves drastically the system's dynamics (in the sense that trajectories of the clearance-free
system and trajectories of the system with clearances, are close one to each other), and that the nonlinear
controllers signi cantly improve the precision. Also the in uence of the restitution (loss of kinetic energy

at collisions) is negligible in our tested examples, while the clearances induce a symmetrical behaviour.
The three-dimensional case should deserve attention, since it has considerable practical signi cance. In
this setting cylindrical contact/impact models could be incorporated. Finally, the nonlinear feedback
controllers which have been shown to be robust with respect to the hard disturbances represented by
clearances, could be enhanced using ideas froim [32]

A Lagrangian formulation of four-bar mechanisms with reduced coordi-
nates

A four-bar mechanism is simplest form of closed-chain linkage and possesses one degree-of-freedom.
The loop-closure constraints in tkeandy coordinates are given as:

4+ l3cos 3 l,cos o 1lic0s1=0 (23)

Iz3sin 3 Isin » lisin 1 =0 (24)

From [23) and[(24) we can expressand 3 in terms of ;. After some mathematical manipulations we
get,

ci( 1)sin( 3)+ c2( 1)cos(3)+ c3( 1) =0 (25)
whereci( 1) =  2lzsin 1;¢( 1) = 23(lg lpsin 1);c3( 1) =12+ 12 13+1%  24l4c0s
Equation|[(Zh) can be solved in closed form as:

p =tan —3; sin 3= A; COS 3 = 7[)2 (26)
2 1+ p? 1+ p?

[3) and.6) we haves  )p? + (2c)p + (¢ + ¢3) = 0, whose solution is given gs =

+C C
% Then we obtain:
3 C2

q__
3( 1) =2arctan2 ¢ g+ s o (27)

2( 1; 3)=arctan2( Iysin 1+ Izsin 3;l3cos 3 11€0S 1) (28)
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where the mappingrctan2( ; ) is de ned8by

arctan ¥ x>0
arctanf+ 'y >0;x< 0
arctan ¥ y< 0;x< 0
arctan2(y; x) = X 29
=, L V> Ox=0 (29)
5 y<0;x=0
unde ned y=x=0
Differentiating [23) and (24) with respect to time yields:
l1sin 14+ 1losin 2 Izsin 33=0 (30)
l1cos 14 lpcos o5+ 13c08 33=0 (31)
We can determine velocities and 5 in terms of 4 as:
@2 lisin( 3 1)
= =< ,=->19 32
FT @ Isin(z 9 (32)
@3 lisin( 2 1)
= =2 ,=>1s 33
P @t sin(z 9 (33)
The dynamical system is form(ljllated from thf Eu(l)er-Lagrange %quations:
@L 1;4 @L 154
E@iA @~ A- (34)
dt @3 @1
L(1:4)=T(112) V(1) (35)

whereL ( 1; 4) 2 R is the Lagrangian functior;( 1; 4) = %_IM ( 1) 4 Is the total kinetic energy,
V ( 1) is the total potential energy of the system anid the external torque. The Lagrangian function is
given as:

L( 15 25 30452 8)=(Ta( 1;4)+ T2( 1; 25 2 2)+ Ta( 35 1)) (Va( 1)+ Vo 1; 2)+ Va( 3))

(36)
whereT; = 0:25my12 2 +0:511 -2, V; = 0:5myligsin 1, Vo = mag(lysin 1 +0:5l;sin 2), V3 =
0:5m3|39 sin 3, To = 05m2(lf_§ + 05@_% + 14115 COS( 1 2) _1_2) +0:5l 2_%, Ts = 0:25m3I§_§ +
0:513-2, g is the gravitational acceleration. FroEk34) we infer the dynamics:

M (D52 N gl 1) = @)
where:
M( 1) =2(J1+ JoAZ+ J3A3+0:Bmalilacos(1 2)), 9( 1) = (Ci+ A1Ca+ AxCs)
N( 1;4)= 2J2A1A19+2J3A2A%0 + As AzA1g+ Ar(An + AjA) 3
= l1sin( 3 1) = lysin( 2 1)
l2sin( 2 3)’ l2sin( 2 3)

_ @A _ licos(z 1) @A _ Iisin(3 1)cos(2  3)

yAz=cos( 1 2),As=0:5mally,

Asg = = . ,Ag = = - ,
T @ sin(z 90 @ lsin?( 2 9)

A= @A _ 2lisin( 2 1) Ao = @A _ licos(2 1)
T @3 I+ lyc0822 23) ° @ lasin( 2 3) '
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_ @A _ 2isin( 3 1) Aqn = @A _ lIisin(2  1)cos(2  3)
@, I3+ I3c0s2, 23) 7 @s l3sin?( 2 3) ’

A1 = %% =sin( 2 1),A12 = @A _ sin( 2 1), A9 = As+ A1Ag + ArA7, Ay =

1 1
Ag+ A1Ag+ AzA1p,J1 = 0:5(0:33my15+ m3l2),J, = 0:17m3l3,J3 = 0:17m3l3,Cy = (0:5myly +
mali)gcos 1, Co = 0:5malogcos 2, C3 = 0:5mslzg cos 3

Ag

B Four-bar mechanism with clearance at jointJ,

A four-bar mechanism with clearance in one revolute joint (see Figure 3(a)) possesses 3 degrees of
freedom. The Lagrange dynamics[in|(12) is given as follows:

" 2 3
J1 05N, O # (0:5m1 + my)F;
_ 2 ) g _ G Gz Giz _ 2 i g
M(q) = 405N, J, 05; Gi(g) = ; 9(0) = 0:5m;F; (38)
Go1 Gz Go23 i
0 0 J3 0.5m3F3
N (g;q) = [0:5N13;0:5N1 2;0]"; B =[1;0;0]" (39)
where:
N2 = mol4l; COS( 1 2), Fqi= g|1COS 1, Fo = glzcas 2, F3 = g|3COS 3,J1 =11+ (O :25mq +
m2)|%,\]2 = I2+0:25sz2,J3 = I3+(0:25m3)I2, E = E)%+ E)?, Ex= 14 lzcos 3+l,cos 1+
[, cos 1,
Ey = lgsin g+ Iysin 2+ I3sin 1,Gy1 = (l1sin 1Ex  I1cos 1Ey):E,

G21 = ( |1 sin 1Ey |1 COS 1EX):E + Iq, G12 = ( |2 sin 2EX |2 COS zEy)ZE,
G13 =( |3 sin 3Ex + |3 COoS 3Ey)=E, G22 = ( |2 sin 2Ey |2 COS 2EX):E ro,
Goz = ( I3 sin 3Ey + |3 cos 3EX)=E

C Four-bar mechanism with clearances at jointsl, and Js

A four-bar mechanism with clearance in two revolute joints (see Figure 3(b)) possesses 5 degrees of
freedomZThe unconstrained dynamics is that of three indgpendent Bodies and is givgn by:

|1+(0125ﬂ11)|% 0 0 0 0 015m19|1COS 1 2]_3
0 I 0 0 0 0 0
M (q) = 0 0 I3+(0:25m3)l2 0 0%; g(q)= RO:Bmaglzcos 34; B = A0
0 0 0 m, O 0 0
0 0 0 0 ms mag 0
(40)
2 3
0
0 "G11 Gz 0 Gus G15# "0 G2 Gz Gu G15#
Niaa = g - Gul@= Goa1 Gz 0 Gos Gos Gald) = 0 G2 &3 G4 G “1)
0
where:
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G = ( Xolysin 1 +0:5l4l5 Sil’]( 1 2) + Ysl, cos 1)C|1,

Gy = (X2|1 cos 1 054, COS( 1 2)+ Yslysin 1 |%)=C|1 + Iy,

Gip = ( 0:5X2|2 sin 2 0:5|1|2 sin( 1 2) +0 35Y2|2 cos 2)=V1,

Gy = (0:5)( 2|2 COS 2 035|1|2 COS( 1 2) +0 Z5Y2|2 sin 2 0325|%)=C|1 Io,

Gua=( Xo+1lycos 1+0:55c0s 2)=Cly,Gi5=( Yo+ Iysin 1+0:5l5sin 2)=Clq,
Gos=(X2 Igsin 1 0Blysin )=Cly, G5 = (Y2 licos 1 05, cos 2)=Cly,

G = ( 0:5l4158in 2 0:5l5l3 sin( 2 3) +0:5Xsl,sin 1 0:5Y3ls cos 2):C|2,

Gz = ( [4l3sin 3+ 0:5l5l3 sin( 2 3) Xolzsin 3+ Yslzcos 3):C|2,

Gz = (0:5l4lcos o OBlylzsin( 2 3) 0:5Xzlpcos 1 +0:5Yalc08 2 0:2:513)=Cly + r3,
G3 = ( [4l3cos 3+ 0:5l5l3 COS( 2 3) + Xslzcos 3+ Yolzsin 3 |§)=C|2 I,
G14=( Xo+ l4+ Izcos 3 0:5l,cos 2)=C|2,G24=(Y2 [3sin 3+ 0:5l5sin 2)=C|2,
G5 = ( Yo+ Igsin 3 0:5l;sin 2)=C|2, G5 = ( Xo+ 4+ I3cos 3 055 cos 2)=C|2,
Cly= (X2 05lpcos o licos 1)2+(Y2 05lxsin o Iisin )2,

Cl, = P ( l4 lzcos 3+0:5l,c0s 5+ X2)2+( Iz3sin 3+0:5lxsin 2+ Yz)z

D Lyapunov functions
The candidate Lyapunov function for the closed loop systein ih (21) is given as:

1 1
V(@)= S(F+K13+C13)= Z2'Pz (42)
n # 2 2

K, 0:5C

0:5C 1

<,z = ("1;7)". Differentiating the Lyapunov function along the closed-loop system's trajectories
gives:

whereP = , the position and velocity tracking errors die=( 1 ) and =( 4

V(z) = 3(Ke3 K1)+ K13+ C%+Cy( Ko Kim)
= kZ:% +#C:% CK2~1:1 CK1~%= ZTQZ

K, C 0:5CK>
0:5CK, CKj

. K 1K : , .
satisfy: 0 < C < ﬁ Ko>C,Ky > %2. The closed-loop dynamics with the passivity-
based controller ir[éZ) a'olmits2 the following Lyapunov-like function [8, p.404]:

(43)

whereQ = . The matriceQ andP are positive de nite if and only if the gains

V(v) = %VTM(q)V; with \L(v) = VvTKv (44)

It allows to prove (in the ideal no-clearance case) that all trajectories are bounded and the tracking errors
globally asymptotically converge to zero.
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