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Abstract

The limited memory BFGS method (L-BFGS) of Liu and Nocedal (1989) is often con-
sidered to be the method of choice for continuous optimization when first- and/or
second- order information is available. However, the use of L-BFGS can be compli-
cated in a black-box scenario where gradient information is not available and therefore
should be numerically estimated. The accuracy of this estimation, obtained by finite
difference methods, is often problem-dependent that may lead to premature conver-
gence of the algorithm.

In this paper, we demonstrate an alternative to L-BFGS, the limited memory Covari-
ance Matrix Adaptation Evolution Strategy (LM-CMA) proposed by Loshchilov (2014).
The LM-CMA is a stochastic derivative-free algorithm for numerical optimization of
non-linear, non-convex optimization problems. Inspired by the L-BFGS, the LM-CMA
samples candidate solutions according to a covariance matrix reproduced from m di-
rection vectors selected during the optimization process. The decomposition of the
covariance matrix into Cholesky factors allows to reduce the memory complexity to
O(mn), where n is the number of decision variables. The time complexity of sampling
one candidate solution is also O(mn), but scales as only about 25 scalar-vector mul-
tiplications in practice. The algorithm has an important property of invariance w.r.t.
strictly increasing transformations of the objective function, such transformations do
not compromise its ability to approach the optimum. The LM-CMA outperforms the
original CMA-ES and its large scale versions on non-separable ill-conditioned prob-
lems with a factor increasing with problem dimension. Invariance properties of the
algorithm do not prevent it from demonstrating a comparable performance to L-BFGS
on non-trivial large scale smooth and nonsmooth optimization problems.
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1 Introduction

In a black-box scenario, knowledge about an objective function f : X → R, to be opti-
mized on some space X, is restricted to the handling of a device that delivers the value
of f(x) for any input x ∈ X. The goal of black-box optimization is to find solutions
with small (in the case of minimization) value f(x), using the least number of calls to
the function f (Ollivier et al., 2011). In continuous domain, f is defined as a mapping
R

n → R, where n is the number of variables. The increasing typical number of vari-
ables involved in everyday optimization problems makes it harder to supply the search
with useful problem-specific knowledge, e.g., gradient information, valid assumptions
about problem properties. The use of large scale black-box optimization approaches
would seem attractive providing that a comparable performance can be achieved.
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The use of well recognized gradient-based approaches such as the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm (Shanno, 1970) is complicated in the black-
box scenario since gradient information is not available and therefore should be esti-
mated by costly finite difference methods (e.g., n+ 1 function evaluations per gradient
estimation for forward difference and 2n + 1 for central difference). The latter proce-
dures are problem-sensitive and may require a priori knowledge about the problem
at hand, e.g., scaling of f , decision variables and expected condition number (Li et al.,
2007).

By the 1980s, another difficulty has become evident: the use of quasi-Newton
methods such as BFGS is limited to small and medium scale optimization problems
for which the approximate inverse Hessian matrix can be stored in memory. As a
solution, it was proposed not to store the matrix but to reconstruct it using informa-
tion from the last m iterations (Nocedal, 1980). The final algorithm called the limited
memory BFGS algorithm (L-BFGS or LM-BFGS) proposed by Liu and Nocedal (1989)
is still considered to be the state-of-the-art of large scale gradient-based optimization
(Becker and Fadili, 2012). However, when a large scale black-box function is consid-
ered, the L-BFGS is forced to deal both with a scarce information coming from only m
recent gradients and potentially numerically imprecise estimations of these gradients
which scale up the run-time in the number of function evaluations by a factor of n. It is
reasonable to wonder whether the L-BFGS and other derivative-based algorithms are
still competitive in these settings or better performance and robustness can be achieved
by derivative-free algorithms.

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) seems to be a
reasonable alternative, it is a derivative-free algorithm designed to learn dependen-
cies between decision variables by adapting a covariance matrix which defines the
sampling distribution of candidate solutions (Hansen et al., 2003). This algorithm con-
stantly demonstrates good performance at various platforms for comparing continu-
ous optimizers such as the Black-Box Optimization Benchmarking (BBOB) workshop
(Finck et al., 2010; Auger et al., 2010; Loshchilov et al., 2013) and the Special Session at
Congress on Evolutionary Computation (Garcı́a et al., 2009; Loshchilov, 2013a). The
CMA-ES was also extended to noisy (Hansen et al., 2009), expensive (Kern et al., 2006;
Loshchilov et al., 2012) and multi-objective optimization (Igel et al., 2007).

The principle advantage of CMA-ES, the learning of dependencies between n de-
cision variables, also forms its main practical limitations such as O(n2) memory storage
required to run the algorithm and O(n2) computational time complexity per function
evaluation (Ros and Hansen, 2008). These limitations may preclude the use of CMA-ES
for computationally cheap but large scale optimization problems if the internal compu-
tational cost of CMA-ES is greater than the cost of one function evaluation. On non-
trivial large scale problems with n > 10, 000 not only the internal computational cost
of CMA-ES becomes enormous but it is becoming simply impossible to efficiently store
the covariance matrix in memory. An open problem is how to extend efficient black-box
approaches such as CMA-ES to n≫ 1000while keeping a reasonable trade-off between
the performance in terms of the number of function evaluations and the internal time
and space complexity. The low complexity methods such as separable CMA-ES (sep-
CMA-ES by Ros and Hansen (2008)), linear time Natural Evolution Strategy (R1-NES
by Sun et al. (2011)) and VD-CMA by Akimoto et al. (2014) are useful when the large
scale optimization problem at hand is separable or decision variables are weakly corre-
lated, otherwise the performance of these algorithms w.r.t. the original CMA-ES may
deteriorate significantly.
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In this paper, we present a greatly improved version of the recently proposed ex-
tension of CMA-ES to large scale optimization called the limited memory CMA-ES
(LM-CMA) by Loshchilov (2014). Instead of storing the covariance matrix, the LM-
CMA stores m direction vectors in memory and uses them to generate solutions. The
algorithm has O(mn) space complexity, where m can be a function of n. The time
complexity is linear in practice with the smallest constant factor among the presented
evolutionary algorithms.

The paper is organized as follows. First, we briefly describe L-BFGS in Section 2
and CMA-ES with its large scale alternatives in Section 3. Then, we present the im-
proved version of LM-CMA in Section 4, investigate its performance w.r.t. large scale
alternatives in Section 5 and conclude the paper in Section 6.

2 The L-BFGS

An early version of the L-BFGS method, at that time called the SQN method, was pro-
posed by Nocedal (1980). During the first m iterations the L-BFGS is identical to the
BFGS method, but stores BFGS corrections separately until the maximum number of
them m is used up. Then, the oldest corrections are replaced by the newest ones. The
approximate of the inverse Hessian of f at iteration k, Hk is obtained by applying m
BFGS updates to a sparse symmetric and positive definite matrix H0 provided by the
user (Liu and Nocedal, 1989).

Let us denote iterates by xk, sk = xk+1 − xk and yk = gk+1 − gk, where g denotes
gradient. The method uses the inverse BFGS formula in the form

Hk+1 = VT
k HkVk + ρksksTk , (1)

where ρk = 1/yT
k sk, and Vk = I − ρkyksTk (Dennis Jr and Schnabel, 1996;

Liu and Nocedal, 1989).
The L-BFGS method works as follows (Liu and Nocedal, 1989):
Step 1. Choose x0, m, 0 < β′ < 1/2, β′ < β < 1, and a symmetric and positive

definite starting matrix H0. Set k = 0.
Step 2. Compute

dk = −Hkgk, (2)

xk+1 = xk + αkdk, (3)

where αk satisfies the Wolfe conditions (Wolfe, 1969):

f(xk + αkdk) ≤ f(xk) + β′αkgTk dk, (4)

g(xk + αkdk)
T dk ≥ βgT

k dk. (5)

The novelty introduced by Liu and Nocedal (1989) w.r.t. the version given in
Nocedal (1980) is that the line search is not forced to perform at least one cubic in-
terpolation, but the unit steplength αk = 1 is always tried first, and if it satisfies the
Wolfe conditions, it is accepted.
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Step 3. Let m̂ = min(k,m−1). Update H0 m̂+1 times using the pairs
{

yj , sj

}k

j=k−m̂

as follows:

Hk+1 = (VT
k · · · VT

k−m̂)H0(Vk−m̂ · · · Vk)

+ρk−m̂(VT
k · · · VT

k−m̂+1)sk−m̂sTk−m̂(Vk−m̂+1 · · · Vk)

+ρk−m̂+1(V
T
k · · · VT

k−m̂+2)sk−m̂+1sTk−m̂+1(Vk−m̂+2 · · · Vk)
...
+ρksksTk

Step 4. Set k = k + 1 and go to Step 2.
The algorithm space and time complexity scales as O(mn) per iteration (not per

function evaluation), where m in order of 5-40 suggested in the original paper is still
the most common setting. An extension to bound constrained optimization called L-
BFGS-B has the efficiency of the original algorithm, however at the cost of a signif-
icantly more complex implementation (Byrd et al., 1995). Extensions to optimization
with arbitrary constraints are currently not available. Satisfactory and computationally
tractable handling of noise is at least problematic, often impossible.

Nevertheless, as already mentioned above, when gradient information is avail-
able, L-BFGS is competitive to other techniques (Becker and Fadili, 2012; Ngiam et al.,
2011) and often can be viewed as a method of choice (Andrew and Gao, 2007) for large
scale continuous optimization. However, in the black-box scenario when gradient-
information is not available (direct search settings), the advantages of L-BFGS are be-
coming less obvious and derivative-free algorithms can potentially perform compara-
ble. In this paper, we investigate this scenario in detail.

3 Evolution Strategies for Large Scale Optimization

Historically, first Evolution Strategies (Rechenberg, 1973) were designed to perform
the search without learning dependencies between variables which is a more recent
development that gradually led to the CMA-ES algorithm (Hansen and Ostermeier,
1996; Hansen et al., 2003). In this section, we discuss the CMA-ES algorithm and its
state-of-the-art derivatives for large scale optimization. For a recent comprehensi-
ble overview of Evolution Strategies, the interested reader is referred to Hansen et al.
(2015). More specifically, the analysis of theoretical foundations of Evolution Strategies
is provided by Wierstra et al. (2014); Ollivier et al. (2011); Akimoto and Ollivier (2013);
Glasmachers (2012); Auger and Hansen (2013); Hansen and Auger (2014); Arnold
(2014); Beyer (2014).

3.1 The CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (Hansen and Ostermeier,
1996, 2001; Hansen et al., 2003) is probably the most popular and in overall the most
efficient Evolution Strategy.

The (µ/µw, λ)-CMA-ES is outlined in Algorithm 1. At iteration t of CMA-ES, a
mean mt of the mutation distribution (can be interpreted as an estimation of the opti-
mum) is used to generate its k-th out of λ candidate solution xk ∈ R

n (line 5) by adding
a random Gaussian mutation defined by a (positive definite) covariance matrix

4 Evolutionary Computation
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Algorithm 1 The (µ/µw, λ)-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3 ln n⌋, µ = ⌊λ/2⌋, wi =
ln(µ+ 1

2 )−ln i
∑µ

j=1(ln(µ+
1
2 )−ln j)

for i = 1 . . . µ,

µw = 1
∑µ

i=1 w2
i

, cσ = µw+2
n+µw+3 , dσ = 1 + cσ + 2max(0,

√
µw−1
n+1 − 1), cc = 4

n+4 , c1 =
2min(1,λ/6)
(n+1.3)2+µw

, cµ = 2 (µw−2+1/µw)
(n+2)2+µw

2: initialize mt=0 ∈ R
n, σt=0 > 0, pt=0

σ = 0, pt=0
c = 0,Ct=0 = I, t← 0

3: repeat
4: for k ← 1, . . . , λ do
5: xk ← mt + σtN (0,Ct )
6: fk ← f(xk)
7: mt+1 ←∑µ

i=1 wixi:λ // the symbol i : λ denotes i-th best individual on f

8: pt+1
σ ← (1− cσ)p

t
σ +

√

cσ(2− cσ)
√
µwC

t− 1
2 mt+1−mt

σt

9: hσ ← 11‖pt+1
σ ‖<

√
1−(1−cσ)2(t+1)(1.4+ 2

n+1 ) E‖N(0,I )‖

10: pt+1
c ← (1− cc)p

t
c + hσ

√

cc(2− cc)
√
µw

mt+1−mt

σt

11: Cµ ←
∑µ

i=1 wi
xi:λ−mt

σt × (xi:λ−mt)T

σt

12: C
t+1 ← (1− c1 − cµ)C

t + c1 pt+1
c pt+1

c

T

︸ ︷︷ ︸

rank−one update

+cµ Cµ
︸︷︷︸

rank−µupdate

13: σt+1 ← σtexp( cσdσ
(
‖pt+1

σ ‖
E‖N(0,I )‖ − 1))

14: t← t+ 1
15: until stopping criterion is met

C
t ∈ R

n×n and a mutation step-size σt as follows:

xtk ← N
(

mt, σt2
C

t
)

← mt + σtN
(
0,Ct

)
(6)

These λ solutions then should be evaluated with an objective function f (line 6).
The old mean of the mutation distribution is stored in mt and a new mean mt+1 is
computed as a weighted sum of the best µ parent individuals selected among λ generated
offspring individuals (line 7). The weights w are used to control the impact of the
selected individuals, the weights are usually higher for better ranked individuals (line
1).

The procedure of the adaptation of the step-size σt in CMA-ES is in-
herited from the Cumulative Step-Size Adaptation Evolution Strategy (CSA-ES)
(Hansen and Ostermeier, 1996) and is controlled by evolution path pt+1

σ . Successful

mutation steps mt+1−mt

σt (line 8) are tracked in the space of sampling, i.e., in the isotropic
coordinate system defined by principal components of the covariance matrix C

t. To
update the evolution path pt+1

σ a decay/relaxation factor cσ is used to decrease the
importance of the previously performed steps with time. The step-size update rule in-
creases the step-size if the length of the evolution path pt+1

σ is longer than the expected
length of the evolution path under random selection E ‖N (0, I )‖, and decreases other-
wise (line 13). The expectation of ‖N (0, I )‖ is approximated by

√
n(1 − 1

4n + 1
21n2 ). A

damping parameter dσ controls the change of the step-size.
The covariance matrix update consists of two parts (line 12): rank-one update

(Hansen and Ostermeier, 2001) and rank-µ update (Hansen et al., 2003). The rank-one

update computes evolution path pt+1
c of successful moves of the mean mt+1−mt

σt of the
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mutation distribution in the given coordinate system (line 10), in a similar way as for
the evolution path pt+1

σ of the step-size. To stall the update of pt+1
c when σ increases

rapidly, a hσ trigger is used (line 9).
The rank-µ update computes a covariance matrix Cµ as a weighted sum of co-

variances of successful steps of µ best individuals (line 11). The update of C itself is a
replace of the previously accumulated information by a new one with corresponding

weights of importance (line 12): c1 for covariance matrix pt+1
c pt+1

c

T
of rank-one update

and cµ for Cµ of rank-µ update (Hansen et al., 2003) such that c1 + cµ ≤ 1. It was
also proposed to take into account unsuccessful mutations in the ”active” rank-µ update
(Hansen and Ros, 2010; Jastrebski and Arnold, 2006).

In CMA-ES, the factorization of the covariance C into AA
T = C is needed to

sample the multivariate normal distribution (line 5). The eigendecomposition with
O(n3) complexity is used for the factorization. Already in the original CMA-ES it was
proposed to perform the eigendecomposition every n/10 generations (not shown in
Algorithm 1) to reduce the complexity per function evaluation to O(n2).

3.2 Large Scale Variants

The original O(n2) time and space complexity of CMA-ES precludes its applications
to large scale optimization with n ≫ 1000. To enable the algorithm for large scale
optimization, a linear time and space version called sep-CMA-ES was proposed by
Ros and Hansen (2008). The algorithm does not learn dependencies but the scaling of
variables by restraining the covariance matrix update to the diagonal elements:

ct+1
jj = (1− ccov)c

t
jj +

1

µcov

(
pt+1
c

)2

j
+ cccov

(

1− 1

µccov

) µ
∑

i=1

wic
t
jj

(
zi:λ

t+1
)2

j
, j = 1, . . . , n (7)

where, for j = 1, . . . , n the cjj are the diagonal elements of Ct and the
(
zi:λ

t+1
)

j
=

(
xi:λ

t+1
)

j
/(σt

√

ctjj).

This update reduces the computational complexity to O(n) and allows to exploit
problem separability. The algorithm demonstrated good performance on separable
problems and even outperformed CMA-ES on non-separable Rosenbrock function for
n > 100.

A Natural Evolution Strategy (NES) variant, the Rank-One NES (R1-NES) by
Sun et al. (2011), adapts the search distribution according to the natural gradient with
a particular low rank parametrization of the covariance matrix,

C = σ2(I+ uuT ), (8)

where u and σ are the parameters to be adjusted. The adaptation of the predom-
inant eigendirection u allows the algorithm to solve highly non-separable problems
while maintaining only O(n) time and O(µn) space complexity. The use of the nat-
ural gradient in the derivation of the NES algorithm motivated a research which led
to the formulation of the Information Geometric Optimization (IGO) framework by
Ollivier et al. (2011).

The IGO framework was used to derive a similar to R1-NES algorithm called VD-
CMA (Akimoto et al., 2014) with the sampling distribution parametrized by a
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Gaussian model with the covariance matrix restricted as follows:

C = D(I+ uuT )D, (9)

where D is a diagonal matrix of dimension n and u is a vector in R
n. This model

is able to represent a scaling for each variable by D and a principal component, which
is generally not parallel to an axis, by Dv (Akimoto et al., 2014). It has O(n) time and
O(µn) space complexity but i) typically demonstrates a better performance than sep-
CMA-ES and R1-NES and ii) can solve a larger class of functions (Akimoto et al., 2014).

A version of CMA-ES with a limited memory storage also called limited memory
CMA-ES (L-CMA-ES) was proposed by Knight and Lunacek (2007). The L-CMA-ES
uses the m eigenvectors and eigenvalues spanning the m-dimensional dominant sub-
space of the n × n-dimensional covariance matrix C . The authors adapted a singular
value decomposition updating algorithm developed by Brand (2006) that allowed to
avoid the explicit computation and storage of the covariance matrix. For m < n the
performance in terms of the number of function evaluations gradually decreases while
enabling the search in R

n for n > 10, 000. However, the computational complexity of
O(m2n) practically (for m in order of

√
n as suggested by Knight and Lunacek (2007))

leads to the same limitations of O(n2) time complexity as in the original CMA-ES.
The (µ/µw, λ)-Cholesky-CMA-ES proposed by Suttorp et al. (2009) is of special in-

terest in this paper because the LM-CMA is based on this algorithm. The Cholesky-
CMA represents a version of CMA-ES with rank-one update where instead of perform-

ing the factorization of the covariance matrix C
t into A

t
A

tT = C
t, the Cholesky factor

A
t and its inverse A

t−1
are iteratively updated. From Theorem 1 (Suttorp et al., 2009)

it follows that if Ct is updated as

C
t+1 = αCt + βvtvtT , (10)

where v ∈ R
n is given in the decomposition form vt = A

tzt, and α, β ∈ R
+, then

for z 6= 0 a Cholesky factor of the matrix C
t+1 can be computed by

A
t+1 =

√
αAt +

√
α

‖zt‖2

(√

1 +
β

α
‖zt‖2 − 1

)

[Atzt]ztT , (11)

for zt = 0 we have A
t+1 =

√
αAt. From the Theorem 2 (Suttorp et al., 2009) it

follows that if A−1t is the inverse of At, then the inverse of At+1 can be computed by

A
−1t+1

=
1√
α
A

−1t − 1
√
α‖zt‖2



1− 1
√

1 + β
α‖zt‖

2



 zt[ztT
A

−1t], (12)

for zt 6= 0 and by A
−1t+1

= 1√
α
A

−1t for zt = 0.

The (µ/µw, λ)-Cholesky-CMA-ES is outlined in Algorithm 2. As well as in the orig-
inal CMA-ES, Cholesky-CMA-ES proceeds by sampling λ candidate solutions (lines 4
- 7) and taking into account the most successful µ out of λ solutions in the evolution
path adaptation (lines 10 and 11). However, the eigendecomposition procedure is not
required anymore because the Cholesky factor and its inverse are updated incremen-
tally (line 13 and 14). This simplifies a lot the implementation of the algorithm and
keeps its time complexity as O(n2). A postponed update of the Cholesky factors every
O(n) iterations would not reduce the asymptotic complexity further (as it does in the

Evolutionary Computation 7
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Algorithm 2 The (µ/µw, λ)-Cholesky-CMA-ES

1: given n ∈ N+, λ = 4 + ⌊3 ln n⌋, µ = ⌊λ/2⌋, wi = ln(µ+1)−ln(i)
µ ln(µ+1)−∑µ

j=1 ln(j)
; i = 1 . . . µ,

µw = 1
∑µ

i=1 w2
i

, cσ =
√
µw√

n+
√
µw

, dσ = 1 + cσ + 2max(0,
√

µw−1
n+1 − 1), cc = 4

n+4 ,

c1 = 2

(n+
√
2)

2

2: initialize mt=0 ∈ R
n, σt=0 > 0, pt=−1

σ = 0, pt=−1
c = 0,At=0 = I,At=0

inv = I, t← 0
3: repeat
4: for k ← 1, . . . , λ do
5: zk ← N (0, I)
6: xk ← mt + σt

Azk

7: fk ← f(xk)
8: mt+1 ←∑µ

i=1 wixi:λ
9: zw ←

∑µ
i=1 wizi:λ

10: pt
σ ← (1− cσ)p

t−1
σ +

√

cσ(2− cσ)
√
µwzw

11: pt
c ← (1 − cc)p

t−1
c +

√

cc(2− cc)
√
µwA

tzw
12: vt ← A

t
invpt

c

13: A
t+1 ← √1− c1A

t +
√
1−c1

‖vt‖2

(√

1 + c1
1−c1
‖vt‖2 − 1

)

pt
cvtT

14: A
t+1
inv ← 1√

1−c1
A

t
inv − 1√

1−c1‖vt‖2

(

1− 1
√

1+
c1

1−c1
‖vt‖2

)

vt[vtT
A

t
inv],

15: σt+1 ← σtexp( cσdσ
(
‖pt

σ‖
E‖N(0,I )‖ − 1))

16: t← t+ 1
17: until stopping criterion is met

original CMA-ES) because the quadratic complexity will remain due to matrix-vector
multiplications needed to sample new individuals.

The non-elitist Cholesky-CMA is a good alternative to the original CMA-ES and
demonstrates a comparable performance (Suttorp et al., 2009). While it has the same
computational and memory complexity, the lack of rank-µ update may deteriorate its
performance on problems where it is essential.

4 The LM-CMA

The LM-CMA is inspired by the L-BFGS algorithm but instead of storing m gradi-
ents for performing inverse Hessian requiring operations it stores m direction vectors
to reproduce the Cholesky factor A and generate candidate solutions with a limited
time and space cost O(mn) (see Section 4.1). These m vectors are estimates of descent
directions provided by evolution path vectors and should be stored with a particu-
lar temporal distance to enrich A (see Section 4.2). An important novelty introduced
w.r.t. the original LM-CMA proposed by Loshchilov (2014) is a procedure for sampling
from a family of search representations defined by Cholesky factors reconstructed from
m∗ ≤ m vectors (see Section 4.3) and according to the Rademacher distribution (see Sec-
tion 4.4). These novelties allow to simultaneously reduce the internal time complexity
of the algorithm and improve its performance in terms of the number of function eval-
uations. Before describing the algorithm itself, we gradually introduce all the necessary
components.

8 Evolutionary Computation
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Algorithm 3 Az(): Cholesky factor - vector update

1: given z ∈ R
n,m ∈ Z+, j ∈ Z

m
+ , i ∈ Z

|i|
+ ,P ∈ R

m×n,V ∈ R
m×n, b ∈ R

m, a ∈ [0, 1]
2: initialize x← z
3: for t← 1, . . . , |i| do

4: k ← bjit V(jit
,:) · z

5: x← ax + kP(jit
,:)

6: return x

Algorithm 4 Ainvz(): inverse Cholesky factor - vector update

1: given z ∈ R
n,m ∈ Z+, j ∈ Z

m
+ , i ∈ Z

|i|
+ , d ∈ R

m, c ∈ [0, 1]
2: initialize x← z
3: for t← 1, . . . , |i| do

4: k ← djit V(jit
,:) · x

5: x← cx− kV(jit
,:)

6: return x

4.1 Reconstruction of Cholesky Factors

By setting a =
√
1− c1, bt =

√
1−c1

‖vt‖2

(√

1 + c1
1−c1
‖vt‖2 − 1

)

and considering the evolu-

tion path pt
c (a change of optimum estimate m smoothed over iterations, see line 12 of

Algorithm 7) together with vt = A
−1tpt

c, one can rewrite Equation (11) as

A
t+1 = aAt + btpt

cvtT , (13)

The product of a random vector z and the Cholesky factor At thus can be directly
computed. At iteration t = 0, A0 = I and A

0z = z, the new updated Cholesky factor

A
1 = aI + b0p0

cv0T . At iteration t = 1, A1z = (aI + b0p0
cv0T )z = az + b0p0

c(v
0T z) and

A
2 = a(aI+ b0p0

cv0T ) + b1p1
cv1T . Thus, a very simple iterative procedure which scales

as O(mn) can be used to sample candidate solutions in IRn according to the Cholesky
factor At reconstructed from m pairs of vectors pt

c and vt.
The pseudo-code of the procedure to reconstruct x = A

tz from m direction vectors
is given in Algorithm 3. At each iteration of reconstruction of x = A

tz (lines 3 - 4), x
is updated as a sum of a-weighted version of itself and bt-weighted evolution path pt

c

(accessed from a matrix P ∈ Rm×n as P(it,:) ) scaled by the dot product of vt and x. As
can be seen, Algorithms 3 and 4 use jit

indexation instead of t. This is a convenient
way to have references to matrices P and V which store pc and v vectors, respectively.
In the next subsections, we will show how to efficiently manipulate these vectors.

A very similar approach can be used to reconstruct x = A
t−1

z, for the sake of
reproducibility the pseudo-code is given in Algorithm 4 for c = 1/

√
1− c1 and dt =

1√
1−c1‖vt‖2 ×

(

1− 1
√

1+
c1

1−c1
‖vt‖2

)

. The computational complexity of both procedures

scales as O(mn).
It is important to note that when a vector pℓ from a set of m vectors stored in

P is replaced by a new vector pt+1 (see line 15 in Algorithm 7), all inverse vectors
vt for t = ℓ, . . . ,m should be iteratively recomputed (Krause, 2014). This procedure
corresponds to line 16 in Algorithm 7.

Evolutionary Computation 9
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Algorithm 5 UpdateSet(): direction vectors update

1: given m ∈ R
+, j ∈ Z

m
+ , l ∈ Z

m
+ , t ∈ Z+,N ∈ Z

m
+ ,P ∈ R

m×n, pc ∈ R
n, T ∈ Z+

2: t← ⌊t/T ⌋
3: if t ≤ m then
4: jt ← t
5: else
6: imin ← 1 + argmini

(

lji+1
− lji

−Ni

)

, |1 ≤ i ≤ (m− 1)

7: if ljimin
− ljimin−1

−Ni ≥ 0 then

8: imin ← 1
9: jtmp ← jimin

10: for i← imin, . . . ,m− 1 do
11: ji ← ji+1

12: jm ← jtmp

13: jcur ← j
min(t+1,m)

14: ljcur ← tT

15: P(jcur,:) ← pc

16: return: jcur, j, l

4.2 Direction Vectors Selection and Storage

The choice to store only m ≪ n direction vectors pc to obtain a comparable amount of
useful information as stored in the covariance matrix of the original CMA-ES requires a
careful procedure of selection and storage. A simple yet powerful procedure proposed
by Loshchilov (2014) is to preserve a certain temporal distance in terms of number of
iterations between the stored direction vectors. The procedure tends to store a more
unique information in contrast to the case if the latest m evolution path vectors would
be stored. The latter case is different from the storage of m gradients as in L-BFGS
since the evolution path is gradually updated at each iteration with a relatively small
learning rate cc and from µ≪ n selected vectors.

The selection procedure is outlined in Algorithm 5 which outputs an array of
pointers j such that j1 points out to a row in matrices P and V with the oldest saved
vectors pc and v which will be taken into account during the reconstruction procedure.
The higher the index i of ji the more recent the corresponding direction vector is. The
index jcur points out to the vector which will be replaced by the newest one in the
same iteration when the procedure is called. The rule to choose a vector to be replaced

is the following. Find a pair of consecutively saved vectors (P
(jimin−1,:),P

(jimin
,:)
) with

the distance between them (in terms of indexes of iterations, stored in l) closest to a
target distance Ni (line 6). If this distance is smaller than Ni then the index jimin will

be swapped with last index of j (lines 9-12) and the corresponding vector P
(jimin

,:)
will

be replaced by the new vector pc (line 15), otherwise the oldest vector among m saved
vectors will be removed (as a result of line 8). Thus, the procedure gradually replaces
vectors in a way to keep them at the distance Ni and with the overall time horizon

for all vectors of at most
∑m−1

i Ni iterations. The procedure can be called periodically
every T ∈ Z+ iterations of the algorithm. The values of Ni are to be defined, e.g., as a
function of problem dimension n and direction vector index i. Here, however, we set
Ni to n for all i, i.e., the target distance equals to the problem dimension.

10 Evolutionary Computation
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Algorithm 6 SelectSubset(): direction vectors selection

1: given m ∈ Z+,mσ = 4, k ∈ Z+

2: if k = 1 then
3: mσ ← 10mσ

4: m∗ ← min(⌊mσ |N (0, 1)|⌋ ,m)
5: i← (m+ 1−m∗), . . . ,m
6: return i

4.3 Sampling from a Family of Search Representations

At iteration t, a new k-th solution can be generated as

xk ← mt + σtAz(zk, i), (14)

where zk ∈ R
n is a vector drawn from some distribution and transformed by a

Cholesky factor by calling Az(zk, i). The Az() procedure (see Algorithm 3) has an input
i which defines indexes of direction vectors used to reconstruct the Cholesky factor. It

is important to note that P(1,:) refers to the first vector physically stored in matrix P,

P(j1,:) refers to the oldest vector, P(jit
,:) refers to the it-th oldest vector according to an

array i with indexes of vectors of interest. Thus, by setting i = 1, . . . ,m all m vectors
will be used in the reconstruction. Importantly, omission of some vector in i can be
viewed as setting of the corresponding learning rate in Equation (13) to 0.

By varying i, one can control the reconstruction of the Cholesky factor used for
sampling and in this way explore a family of possible transformations of the coordinate
system. The maximum number of vectors defined by m can be associated with the
number of degrees of freedom of this exploration.

While in the original LM-CMA (Loshchilov, 2014) the value of m is set to 4 +
⌊3 ln n⌋ to allow the algorithm scale up to millions of variables, we found that greater
values of m, e.g.,

√
n often lead to better performance (see Section 5.7 for a detailed

analysis). Thus, when memory allows, a gain in performance can be achieved. How-
ever, due to an internal cost O(mn) of Az(), the time cost then would scale as O(n3/2)
which is undesirable for n ≫ 1000. This is where the use of m∗ out of m vectors can
drastically reduce the time complexity. We propose to sample m∗ from a truncated
half-normal distribution

∣
∣N
(
0,m2

σ

)∣
∣ (see line 4 of Algorithm 6) and set i to the latest

m∗ vectors (line 5). For a constant mσ = 4, the time complexity of Az() scales as O(n).
New value of m∗ is generated for each new individual. Additionally, to exploit the old-
est information, we force m∗ to be generated with 10mσ for one out of λ individuals.
While for m∗ = 0 the new solution xk appears to be sampled from an isotropic normal
distribution, the computation of v inverses is performed using all m vectors.

4.4 Sampling from the Rademacher Distribution

Evolution Strategies are mainly associated with the multivariate normal distribution
used to sample candidate solutions. However, alternative distributions such as the
Cauchy distribution can be used (Yao and Liu, 1997; Hansen, 2008). Moreover, the
Adaptive Encoding procedure proposed by Hansen (2008) can be coupled with any
sampling distribution as in Loshchilov et al. (2011), where it was shown that com-
pletely deterministic adaptive coordinate descent on principal components obtained
with the Adaptive Encoding procedure allows to obtain the performance comparable
to the one of CMA-ES.

Evolutionary Computation 11
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In this paper, inspired by Loshchilov et al. (2011), we replace the original multi-
variate normal distribution used in LM-CMA by the Rademacher distribution, where a
random variable has 50% chance to be either -1 or +1 (also can be viewed as a Bernoulli
distribution). Thus, a pre-image vector of candidate solution z contains n values which
are either -1 or +1. Our intention to use this distribution is three-fold: i) to reduce the
computation complexity by a constant but rather significant factor, ii) to demonstrate
that the Rademacher distribution can potentially be an alternative to the Gaussian dis-
tribution at least in large scale settings, iii) to demonstrate that our new step-size adap-
tation rule (see next section), which does not make assumptions about the sampling
distribution, can work well when used with non-Gaussian distributions. As a support
for this substitution, we recall that for a n-dimensional unit-variance spherical Gaus-

sian, for any positive real number β ≤ √n, all but at most 3 exp−cβ2

of the mass lies
within the annulus

√
n− 1− β ≤ r ≤

√
n− 1 + β, where, c is a fixed positive constant

(Hopcroft and Kannan, 2015). Thus, when n is large, the mass is concentrated in a thin
annulus of width O(1) at radius

√
n. Interestingly, the sampling from the Rademacher

distribution reproduces this effect of large-dimensional Gaussian sampling since the
distance from the center of a n-dimensional hypercube to its corners is

√
n.

4.5 Population Success Rule

The step-size used to define the scale of deviation of a sampled candidate solution from
the mean of the mutation distribution can be adapted by the Population Success Rule
(PSR) proposed for LM-CMA by Loshchilov (2014). This procedure does not assume
that candidate solutions should come from the multivariate normal distribution as it is
often assumed in Evolution Strategies including CMA-ES. Therefore, PSR procedure is
well suited for the Rademacher distribution.

The PSR is inspired by the median success rule (Ait Elhara et al., 2013). To estimate
the success of the current population we combine fitness function values from the pre-
vious and current population into a mixed set

fmix ← f t−1 ∪ f t (15)

Then, all individuals in the mixed set are ranked to define two sets rt−1 and rt (the
lower the rank the better the individual) containing ranks of individuals of the previous
and current populations ranked in the mixed set. A normalized success measurement
is computed as

zPSR ←
∑λ

i=1 rt−1(i)− rt(i)

λ2
− z∗, (16)

where z∗ is a target success ratio and λ2 accounts for the normalization of the sum term
and for different possible population size λ. Then, for s ← (1 − cσ)s + cσzPSR, the
step-size is adapted as

σt+1 ← σt exp (s/ dσ), (17)

where dσ is a damping factor which we set here to 1.

4.6 The Algorithm

The improved LM-CMA is given in Algorithm 7. At each iteration t, λ candidate so-
lutions are generated by mutation defined as a product of a vector zk sampled from
the Rademacher distribution and a Cholesky factor A

t reconstructed from m∗ out of
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Algorithm 7 The (µ/µw, λ)-LM-CMA

1: given n ∈ N+, λ = 4 + ⌊3 ln n⌋, µ = ⌊λ/2⌋, wi = ln(µ+1)−ln(i)
µ ln(µ+1)−∑µ

j=1 ln(j)
; i = 1 . . . µ,

µw = 1
∑µ

i=1 w2
i

, cσ = 0.3, z∗ = 0.25, m = 4 + ⌊3 ln n⌋, Nsteps = n, cc = 0.5√
n

, c1 =
1

10 ln(n+1) , dσ = 1, T = ⌊log(n)⌋
2: initialize mt=0 ∈ R

n, σt=0 > 0, pt=0
c = 0, s← 0, t← 0

3: repeat
4: for k ← 1, . . . , λ do
5: if k (mod 2) = 1 then
6: zk ← Rademacher()
7: i← SelectSubset(k)
8: xk ← mt + σtAz(zk, i)
9: else

10: xk ← mt − (xk−1 −mt)
11: ftk ← f(xk)
12: mt+1 ←∑µ

i=1 wixi:λ
13: pt+1

c ← (1− cc)p
t
c +

√

cc(2 − cc)
√
µw(m

t+1 −mt)/σt

14: if t (mod T ) = 0 then
15: UpdateSet(pt+1

c )
16: UpdateInverses()
17: rt, rt−1 ← Ranks of f t and f t−1 in f t ∪ f t−1

18: zPSR ←
∑λ

i=1 rt−1(i)−rt(i)

λ2 − z∗

19: s← (1− cσ)s+ cσzPSR

20: σt+1 ← σtexp(s/dσ)
21: t← t+ 1
22: until stopping criterion is met

m vectors (line 4-11) as described in Sections 4.1-4.4. We introduce the mirrored sam-
pling (Brockhoff et al., 2010) to generate the actual xk only every second time and thus
decrease the computation cost per function evaluation by a factor of two by evaluating
mt + σtAz(zk) and then its mirrored version mt − (xk−1 − mt). The latter approach
sometimes also improves the convergence rate.

The best µ out of λ solutions are selected to compute the new mean mt+1 of the
mutation distribution in line 12. The new evolution path pt+1

c is updated (line 13) from
the change of the mean vector

√
µw(m

t+1−mt)/σt and represents an estimate of descent
direction. One vector among m vectors is selected and replaced by the new pt+1

c in
UpdateSet() procedure described in Section 4.2. All inverses v of evolution path vectors
which are at least as recent as the direction vector to be replaced should be recomputed
in the UpdateInverses() procedure as described in Section 4.1. The step-size is updated
according to the PSR rule described in Section 4.5.

5 Experimental Validation

The performance of the LM-CMA is investigated comparatively to the L-BFGS
(Liu and Nocedal, 1989), the active CMA-ES by Hansen and Ros (2010) and the VD-
CMA by Akimoto et al. (2014). The sep-CMA-ES is removed from the comparison due
to its similar but inferior performance w.r.t. the VD-CMA observed both in our study
and by Akimoto et al. (2014).

Evolutionary Computation 13



I. Loshchilov

Table 1: Test functions, initialization intervals and initial standard deviation (when
applied). R is an orthogonal n × n matrix with each column vector qi being a
uniformly distributed unit vector implementing an angle-preserving transformation
(Ros and Hansen, 2008)

.
Name Function Target f(x) Init σ0

Sphere fSphere(x)=
∑n

i=1 x2i 10−10 [−5, 5]n 3

Ellipsoid fElli(x)=
∑n

i=1 10
6 i−1
n−1 x2i 10−10 [−5, 5]n 3

Rosenbrock fRosen(x)=
∑n−1

i=1

(

100.(x2i − xi+1)
2 + (xi − 1)2

)

10−10 [−5, 5]n 3

Discus fDiscus(x)= 106x21 +
∑n

i=2 x2i 10−10 [−5, 5]n 3

Cigar fCigar (x)= x2
1 + 106

∑n
i=2 x2i 10−10 [−5, 5]n 3

Different Powers fDiffPow(x)=
∑n

i=1 |xi|2+4(i−1)/(n−1) 10−10 [−5, 5]n 3

Rotated Ellipsoid fRotElli(x)=fElli(Rx) 10−10 [−5, 5]n 3

Rotated Rosenbrock fRotRosen(x)=fRosen(Rx) 10−10 [−5, 5]n 3

Rotated Discus fRotDiscus(x)=fDiscus (Rx) 10−10 [−5, 5]n 3

Rotated Cigar fRotCigar (x)=fCigar (Rx) 10−10 [−5, 5]n 3

Rotated Different Powers fRotDiffP ow(x)=fDiffP ow(Rx) 10−10 [−5, 5]n 3

We use the L-BFGS implemented in MinFunc library by Schmidt (2005) in its de-
fault parameter settings 1, the active CMA-ES (aCMA) without restarts in its default
parametrization of CMA-ES MATLAB code version 3.61 2. For faster performance in
terms of CPU time, the VD-CMA was (exactly) reimplemented in C language from the
MATLAB code provided by the authors. For the sake of reproducibility, the source code
of all algorithms is available online 3. The default parameters of LM-CMA are given in
Algorithm 7.

We use a set of benchmark problems (see Table 1) commonly used in Evolutionary
Computation, more specifically in the BBOB framework (Finck et al., 2010). Indeed,
many problems are missing including the ones where tested methods and LM-CMA
fail to timely demonstrate reasonable performance in large scale settings. We focus on
algorithm performance w.r.t. both the number of function evaluations used to reach
target values of f , CPU time spent per function evaluation and the number of memory
slots required to run algorithms. Any subset of these metrics can dominate search
cost in large scale settings, while in low scale settings memory is typically of a lesser
importance.

In this section, we first investigate the scalability of the proposed algorithm w.r.t.
the existing alternatives. While both the computational time and space complexities
scale moderately with problem dimension, the algorithm is capable to preserve certain
invariance properties of the original CMA-ES. Moreover, we obtain unexpectedly good
results on some well-known benchmark problems, e.g., linear scaling of the budget of
function evaluations to solve Separable and Rotated Ellipsoid problems. We demon-
strate that the performance of LM-CMA is comparable to the one of L-BFGS with exact
estimation of gradient information. Importantly, we show that LM-CMA is competitive
to L-BFGS in very large scale (for derivative-free optimization) settings with 100,000
variables. Finally, we investigate the sensitivity of LM-CMA to some key internal pa-
rameters such as the number of stored direction vectors m.

1http://www.cs.ubc.ca/˜schmidtm/Software/minFunc.html
2http://www.lri.fr/˜hansen/cmaes.m
3http://sites.google.com/site/ecjlmcma/
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Figure 1: Number of memory slots of floating point variables required to run different
optimization algorithms versus problem dimension n.

5.1 Space Complexity

The number of memory slots required to run optimization algorithms versus problem
dimension n referred to as space complexity can limit applicability of certain algorithms
to large scale optimization problems. Here, we list the number of slots up to constant
and asymptotically constant terms.

The presented algorithms store λ generated solutions (LM-CMA, VD-CMA and
aCMA with the default λ = 4 + ⌊3 ln n⌋ and µ = λ/2, L-BFGS with λ = 1) and some
intermediate information (LM-CMA and L-BFGS with m pairs of vectors, aCMA with
at least two matrices of size n × n) to perform the search. Our implementation of VD-
CMA requires (max(µ + 15, λ) + 7)n slots compared to (2.5λ + 21)n of the original
MATLAB code. The LM-CMA requires (2m+ λ + 6)n+ 5m slots, the L-BFGS requires
(2m+ 3)n slots and aCMA requires (2n+ λ+ 3)n slots.

Figure 1 shows that due to its quadratic space complexity aCMA requires about
2 × 108 slots (respectively, 8 × 108 slots) for 10,000-dimensional (respectively, 20,000-
dimensional) problems which with 8 bytes per double-precision floating point number
would correspond to about 1.6 GB (respectively, 6.4 GB) of computer memory. This
simply precludes the use of CMA-ES and its variants with explicit storage of the full
covariance matrix or Cholesky factors to large scale optimization problems with n >
10, 000. LM-CMA stores m pairs of vectors as well as the L-BFGS. For m = 4 + ⌊3 ln n⌋
(as the default population size in CMA-ES), L-BFGS is 2 times and LM-CMA is 3 times
more expensive in memory than VD-CMA, but they all basically can be run for millions
of variables.

In this paper, we argue that additional memory can be used while it is allowed and
is at no cost. Thus, while the default m = 4 + ⌊3 ln n⌋, we suggest to use m = ⌊2√n⌋
if memory allows (see Section 5.7). In general, the user can provide a threshold on
memory and if, e.g., by using m = ⌊2√n⌋ this memory threshold would be violated,
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Figure 2: Timing results of LM-CMA and VD-CMA averaged over the whole run on
the separable Ellipsoid compared to timing results of simple operations averaged over
100 seconds of experiments. The results for L-BFGS are not shown but for an optimized
implementation would be comparable to one scalar-vector multiplication.

the algorithm automatically reduces m to a feasible mf .

5.2 Time Complexity

The average amount of CPU time internally required by an algorithm per evaluation
of some objective function f ∈ R

n (not per algorithm iteration) referred to as time
complexity also can limit applicability of certain algorithms to large scale optimization
problems. They simply can be too expensive to run, e.g., much more expensive than to
perform function evaluations.

Figure 2 shows how fast CPU time per evaluation scales for different operations
measured on one 1.8 GHz processor of an Intel Core i7-4500U. Scalar-vector multipli-
cation of a vector with n variables scales linearly with ca. 4 ·10−10n seconds, evaluation
of the separable Ellipsoid function is 2-3 times more expensive if a temporary data is
used. Sampling of n normally distributed variables scales as ca. 60 vectors-scalar mul-
tiplications that defines the cost of sampling of unique candidate solutions of many
Evolution Strategies such as separable CMA-ES and VD-CMA. However, the sampling
of variables according to the Rademacher distribution is about 10 times cheaper. The
use of mirrored sampling also decreases the computational burden without worsening
the convergence. Finally, the internal computation cost of LM-CMA scales linearly as
about 25 scalar-vector multiplications per function evaluation. It is much faster than
the lower bound for the original CMA-ES defined by one matrix-vector multiplication
required to sample one individual. We observe that the cost of one matrix-vector mul-
tiplications costs about 2n scalar-vector multiplications, the overhead is probably due
to access to matrix members.

The proposed version of LM-CMA is about 10 times faster internally than the orig-
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inal version by Loshchilov (2014) due to the use of mirrored sampling, the Rademacher
sampling distribution and sampling with m∗ instead of m direction vectors both for
m = 4+ ⌊3 ln n⌋ and m = ⌊2√n⌋. For 8192-dimensional problems it is about 1000 times
faster internally than CMA-ES algorithms with the full covariance matrix update (the
cost of Cholesky-CMA-ES is given in Loshchilov (2014)).

5.3 Invariance under Rank-preserving Transformations of the Objective Function

The LM-CMA belongs to a family of so-called comparison-based algorithms. The per-
formance of these algorithms is unaffected by rank-preserving (strictly monotonically
increasing) transformations of the objective function, e.g., whether the function f , f3 or

f × |f |−2/3 is minimized (Ollivier et al., 2011). Moreover, this invariance property pro-
vides robustness to noise as far as this noise does not impact a comparison of solutions
of interest (Auger and Hansen, 2013).

In contrast, gradient-based algorithms are sensitive to rank-preserving transfor-
mations of f . While the availability of gradient information may mitigate the problem
that objective functions with the same contours can be solved with a different number
of functions evaluations, the lack of gradient information forces the user to estimate it
with approaches whose numerical stability is subject to scaling of f . Here, we simu-
late L-BFGS in an idealistic black-box scenario when gradient information is estimated
perfectly (we provide exact gradients) but at the cost of n+ 1 function evaluations per
gradient that corresponds to the cost of the forward difference method. Additionally,
we investigate the performance of L-BFGS with the central difference method (2n + 1
evaluations per gradient) which is twice more expensive but numerically more stable.
We denote this method as CL-BFGS.

5.4 Invariance under Search Space Transformations

Invariance properties under different search space transformations include translation
invariance, scale invariance, rotational invariance and general linear invariance un-
der any full rank matrix R when the algorithm performance on f(x) and f(Rx) is
the same given that the initial conditions of the algorithm are chosen appropriately
(Hansen et al., 2011). Thus, the lack of the latter invariance is associated with a better
algorithm performance for some R and worse for the others. In practice, it often ap-
pears to be relatively simple to design an algorithm specifically for a set of problems
with a particular R, e.g., identity matrix, and then demonstrate its good performance.
If this set contains separable problems, the problems where the optimum can be found
with a coordinate-wise search, then even on highly multi-modal functions great results
can be easily achieved (Loshchilov et al., 2013). Many derivative-free search algorithms
in one or another way exploit problem separability and fail to demonstrate a compara-
ble performance on, e.g., rotated versions of the same problems. This would not be an
issue if most of real-world problems are separable, this is, however, unlikely to be the
case and some partial-separability or full non-separability are more likely to be present.

The original CMA-ES is invariant w.r.t. any invertible linear transformation of
the search space, R, if the initial covariance matrix C

t=0 = R−1(R−1)T , and the initial
search point(s) are transformed accordingly Hansen (2006). However, R matrix is often
unknown (otherwise, one could directly transform the objective function) and cannot
be stored in memory in large scale settings with n ≫ 10, 000. Thus, the covariance
matrix adapted by LM-CMA has at most rank m and so the intrinsic coordinate system
cannot capture some full rank matrix R entirely. Therefore, the performance of the
algorithm on f(Rx) compared to f(x) depends on R. However, in our experiments,
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Rotated Ellipsoid
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Figure 3: The trajectories show the median of 11 runs of LM-CMA, L-BFGS with exact
gradients provided at the cost of n+ 1 evaluations per gradient, CL-BFGS with central
differencing, active CMA-ES and VD-CMA on 512- Separable/Original (Left Column)
and Rotated (Right Column) functions.

differences in performance on axis-aligned and rotated ill-conditioned functions were
marginal.

Here, we test LM-CMA, aCMA, L-BFGS, CL-BFGS both on separable problems and
their rotated versions (see Table 1). It is simply intractable to run algorithms on large
scale rotated problems with n > 1000 due to the quadratic cost of involved matrix-
vectors multiplications (see Figure 2). Fortunately, there is no need to do it for algo-
rithms that are invariant to rotations of the search space since their performance is the
same as on the separable problems whose evaluation is cheap (linear in time). Figures
3-4 show that the performance of aCMA on 512-dimensional (the dimensionality still
feasible to perform full runs of aCMA) separable (left column) and rotated (right col-
umn) problems is very similar and the difference (if any) is likely due to a non-invariant
initialization. The invariance in performance is not guaranteed but rather observed for
LM-CMA, L-BFGS and CL-BFGS. However, the performance of the VD-CMA degrades
significantly on fRotElli, fRotDiscus and fRotDiffPow functions due to the restricted form
of the adapted covariance matrix of Equation (9). Both fRosen, fCigar and their rotated
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Figure 4: The trajectories show the median of 11 runs of LM-CMA, L-BFGS with exact
gradients, CL-BFGS with central differencing, active CMA-ES and VD-CMA on 512-
Separable (Left Column) and Rotated (Right Column) functions.

versions can be solved efficiently since they have a Hessian matrix whose inverse can
be well approximated by Equation (9) (Akimoto et al., 2014).

An important observation from Figures 3-4 is that even the exact gradient infor-
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Figure 5: Median (out of 11 runs) number of function evaluations required to find
f(x) = 10−10 for LM-CMA, L-BFGS with exact gradients, CL-BFGS with central dif-
ferencing, active CMA-ES and VD-CMA. Dotted lines depict extrapolated results.

mation is not sufficient for L-BFGS to avoid numerical problems which lead to an im-
precise estimation of the inverse Hessian matrix and premature convergence on fElli

and fRotElli. The L-BFGS with the central difference method (CL-BFGS) experiences
an early triggering of stopping criteria on fRosen and fDiffPow. While numerical prob-
lems due to imprecise derivative estimations are quite natural for L-BFGS especially
on ill-conditioned problems, we assume that with a better implementation of the algo-
rithm (e.g., with high-precision arithmetic) one could obtain a more stable convergence.
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Therefore, we extrapolate the convergence curves of L-BFGS and CL-BFGS towards the
target f = 10−10 after removing the part of the curve which clearly belongs to the
stagnation, e.g., f < 10−7 on fElli.

5.5 Scaling with Problem Dimension

The performance versus the increasing number of problem variables is given in Figure
5. We exclude the results of VD-CMA on some problems because, as can be seen from
Figures 3-4, the algorithm does not find the optimum with a reasonable number of
function evaluations or/and convergences prematurely. For algorithms demonstrating
the same performance on separable and non-separable problems (see Figures 3-4), we
plot some results obtained on separable problems as obtained on rotated problems in
Figure 5 to avoid possible misunderstanding from designers of separability-oriented
algorithms.

The results suggest that L-BFGS shows the best performance, this is not surprising
given the form of the selected objective functions (see Table 1). We should also keep in
mind that the exact gradients were provided and this still led to premature convergence
on some functions (see Figures 3-4). In the black-box scenario, one would probably use
L-BFGS with the forward or central (CL-BFGS) difference methods. The latter is often
found to lead to a loss by a factor of 2 (as expected due to 2n + 1 versus n + 1 cost
per gradient), except for the fRotDiffPow, where the loss is increasing with problem
dimension.

Quite surprisingly, the LM-CMA outperforms VD-CMA and aCMA on fSphere.
This performance is close to the one obtained for (1+1) Evolution Strategy with opti-
mal step-size. Bad performance on fSphere anyway would not directly mean that an
algorithm is useless, but could illustrate its performance in vicinity of local optima
when variable-metric algorithms (e.g., CMA-like algorithms) may perform an isotropic
search w.r.t. an adapted internal coordinate system. The obtained results are mainly
due to the Population Success Rule which deserves an independent study similar to
the one by Hansen et al. (2014). Nevertheless, we would like to mention a few key
points of the PSR. By design, depending on the target success ratio z∗, one can get ei-
ther biased (for z∗ 6= 0) or unbiased (for z∗ = 0) random walk on random functions. It
would be a bias to say that either biased or unbiased change of σ ”is better” on random
functions, since the latter depends on the context. Due to the fact that the (weighted)
mean of each new population is computed from the best µ out of λ individuals, the
λ individuals of the new generation are typically as good as the (weighted) best µ in-
dividuals of the previous one, and, thus, if z∗ = 0 one may expect zPSR > 0 from
Equation (16). Typically, it is reasonable to choose z∗ ∈ (0, 0.5) lower-bounded by 0
due to random functions and upper-bounded by 0.5 due to linear functions. In this
study, we choose 0.3 which lies roughly in the middle of the interval. It is important to
mention a striking similarity with the 1/5th success rule (Schumer and Steiglitz, 1968;
Rechenberg, 1973). We consider the PSR to be its population-based version.

The performance of LM-CMA on fElli is probably the most surprising result of
this work. In general, the scaling of CMA-ES is expected to be from super-linear to
quadratic with n on fElli since the number of parameters of the full covariance matrix
to learn is (n2 + n)/2 (Hansen and Ostermeier, 2001). While aCMA demonstrates this
scaling, LM-CMA scales linearly albeit with a significant constant factor. The perfor-
mance of both algorithms coincides at n ≈ 1000, then, LM-CMA outperforms aCMA
(given that our extrapolation is reasonable) with a factor increasing with n. It should be
noted that aCMA is slower in terms of CPU time per function evaluation by a factor of
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Figure 6: The trajectories show the median of 11 runs of LM-CMA, L-BFGS (with exact
gradients provided at the cost of n+1 evaluations per gradient) on 100,000-dimensional
Rosenbrock and Ellipsoid functions.

n/10 (see Figure 2). Another interesting observation is that the L-BFGS is only slightly
faster than LM-CMA, while CL-BFGS is actually outperformed by the latter. An insight
to these observations can be found in Figure 3 where both LM-CMA and L-BFGS out-
perform aCMA by a factor of 10 in the initial part of the search, while aCMA compen-
sates this loss by having the covariance matrix well adapted that allows to accelerate
convergence close to the optimum. This might be explained as follows: a smaller num-
ber of internal parameters defining the intrinsic coordinate system can be learned faster
and with greater learning rates, this allows a faster convergence but may slow down
the search in vicinity of the optimum if the condition number cannot be captured by
the reduced intrinsic coordinate system.

The LM-CMA is better or is as good as VD-CMA on fRosen and fCigar where it is
expected to be outperformed by the latter due a presumably few principal components
needed to be learnt to solve these problems. The scaling on fRosen suggests that the
problem is more difficult (e.g., more difficult than fElli) than one could expect, mainly
due to an adaptation of the intrinsic coordinate system required while following the
banana shape valley of this function.

The results on 100,000-dimensional problems (see Figure 6) show that LM-CMA
outperforms L-BFGS on the first 10n − 20n function evaluations which corresponds
to the first 10-20 iterations of L-BFGS. This observation suggests that LM-CMA can
be viewed as an alternative to L-BFGS when n is large and the available number of
function evaluations is limited. While it can provide a competitive performance in
the beginning, it is also able to learn dependencies between variables to approach the
optimum.

5.6 Performance on a nonsmooth variant of Nesterov’s function

While designed for smooth optimization, BFGS is known to work well for nonsmooth
optimization too. A recent study by Overton (2015) demonstrated the difficulties en-
countered by BFGS on some nonsmooth functions. We selected one of the test functions
from Overton (2015) called the second nonsmooth variant of Nesterov-Chebyshev-
Rosenbrock function defined as follows:
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Figure 7: The trajectories show the median of 11 runs of LM-CMA in default settings,
CL-BFGS in default settings and tuned LM-CMA (all three algorithms are with restarts)
on the second nonsmooth variant of Nesterov-Chebyshev-Rosenbrock function in di-
mensions 128 and 2048.

N̂(x) =
1

4
|x1 − 1|+

n−1∑

i=1

|xi+1 − 2 |xi|+ 1| (18)

This function is nonsmooth (though locally Lipschitz) as well as nonconvex, it has
2n−1 Clarke stationary points (Overton, 2015). Overton (2015) showed that for n =
5 BFGS starting from 1000 randomly generated points finds all 16 Clarke stationary
points (for the definition of Clarke stationary points see Abramson and Audet (2006))
and the probability to find the global minimizer is only by about a factor of 2 greater
than to find any of the Clarke stationary points. This probability dropped by a factor of
2 for n = 6 while and since the number of Clarke stationary points doubled (Overton,
2015). Clearly, the problem becomes extremely difficult for BFGS when n is large.

We launched LM-CMA and CL-BFGS (L-BFGS performed worse) on N̂(x) for
n = 128 and n = 2048. Figure 7 shows that CL-BFGS performs better than LM-CMA,
however, both algorithms in default settings and with restarts do not perform well. We
tuned both LM-CMA and CL-BFGS but report the results only for LM-CMA since we
failed to improve the performance of CL-BFGS by more than one order of magnitude of
the objective function value. The tuned parameters for LM-CMA are: i) doubled popu-
lation size λ, ii) increased learning rate by 15 to c1 = 15/(10 ln(n+1)), iii) an extremely
small learning rate for step-size adaptation cσ = 0.3/n2 instead of cσ = 0.3. The last
modification is probably the most important, practically, it defines the schedule how
step-size decreases. A similar effect can be achieved by reducing z∗ or increasing dσ .
Faster learning of dependencies between variables and slower step-size decrease dras-
tically improve the convergence and the problem can be solved both for n = 128 and
n = 2048 (Figure 7). Interestingly, the number of function evaluations scales almost
linearly with problem dimension.

We expected that tuning of CL-BFGS will lead to similar improvements. Surpris-
ingly, our attempts to modify its parameters, often in order to slow down the conver-
gence (e.g., type and number of line-search steps, Wolfe conditions parameters) failed.
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Figure 8: Sensitivity of LM-CMA to different settings of m.

We still expect that certain modifications should improve CL-BFGS and thus we leave

this question open. The settings tuned for N̂(x) function differ significantly from the
default ones. It is of great interest to find an online procedure to adapt them. The next
section is aimed at gaining some intuition on parameters importance in LM-CMA.

5.7 Sensitivity to Parameters

The black-box scenario implies that the optimization problem at hand is not known,
it is therefore hard if even possible to suggest a ”right” parametrization of our algo-
rithm that works best on all problems. Offline tuning in large scale optimization is also
computationally expensive. It is rather optimistic to believe that one always can afford
enough computational resources to run algorithms till the optimum on very large real-
world optimization problems. Nevertheless, we tend to focus on this scenario in order
to gain an understanding about scalability on benchmark problems.

Our experience with parameter selection by exclusion of non-viable settings sug-
gests that there exists a dependency between the population size λ, number of stored
vectors m, the target temporal distance between them Nsteps, the learning rate cc for the
evolution path and learning rate c1 for the Cholesky factor update. The main reason
for this is that all of them impact how well the intrinsic coordinate system defined by
the Cholesky factor reflects the current optimization landscape. A posteriori, if m≪ n,
it seems reasonable to store vectors with a temporal distance in order of Nsteps = n on
problems where a global coordinate system is expected to be constant, e.g., on a class
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Rosenbrock, m=5, 4866x103 evals.
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Ellipsoid, m=5, 14311x103 evals.
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Cigar, m=5, 473x103 evals.
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Cigar, m=24, 196x103 evals.
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Cigar, m=64, 180x103 evals.
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Discus, m=5, 6712x103 evals.
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Figure 9: Eigenspectrums of Ct = A
t
A

tT for t denoting iteration of LM-CMA with
m direction vectors (m = 5, m = 4 + ⌊3 ln 1024⌋ = 24, m = ⌊2√n⌋ = 64) on 1024-
dimensional problems. Darker (blue) lines correspond to later iterations. The number
of function evaluations to reach f(x) = 10−10 is given in the title of each sub-figure.
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of problems described by the general ellipsoid model (Beyer, 2014). The learning rate
for the evolution path is related to both m and n, here, we set it to cc = 0.5√

n
which is

roughly inversely proportional to the (if affordable) suggested m = ⌊2√n⌋. We found
that the chosen cc is still valid for the default m = 4 + ⌊3 ln n⌋. We do not have a
good interpretation for the learning rate c1 = 1

10 ln(n+1) . In general, we are not in favor

of strongly arguing for some parameters settings against the others since as already
mentioned above they are problem-dependent. A more appropriate approach would
be to perform online adaptation of hyper-parameters as implemented for the original
CMA-ES by Loshchilov et al. (2014).

We present an analysis for m which directly affects the amount of memory required
to run the algorithm, and, thus, is of special interest since the user might be restricted
in memory on very large scale optimization problems with n > 106. Figure 8 shows
that the greater the m the better the performance. The results obtained for the default
m = 4+⌊3 ln n⌋, i.e., the results demonstrated in the previous sections can be improved
with m = ⌊2√n⌋. The improvements are especially pronounced on fDiscus functions,
where the factor is increasing with n and the overall cost to solve the function reaches
the one extrapolated for aCMA at n = 8192 (see Figure 5). It is surprising to observe
that m = 5 and even m = 2 are sufficient to solve fElli, fDiscus and fDiffPow. The latter
is not the case for fCigar, where small values of m lead to an almost quadratic growth
of run-time. The overall conclusion would be that on certain problems the choice of m
is not critical, while greater values of m are preferable in general.

We investigated the eigenspectrum of the covariance matrix C
t constructed as

A
t
A

tT from the Cholesky factor A
t. The results for single runs on different 1024-

dimensional functions and for different m are shown in Figure 9. The evolution of
the eigenspectrum during the run is shown by gradually darkening (blue) lines with
increasing t. Clearly, the number of eigenvalues is determined by m. The profiles, e.g.,
the one of fCigar, also reflect the structure of the problems (see Table 1). The greater
the m, the greater condition number can be captured by the intrinsic coordinate system
as can be see for fElli, fDiscus and fDiffPow, that in turn leads to a better performance.
However, this is not always the case as can be seen for fRosen that again demonstrates
that optimal hyper-parameter settings are problem-dependent.

6 Conclusions

We adapt an idea from derivative-based optimization to extend best performing evo-
lutionary algorithms such CMA-ES to large scale optimization. This allows to reduce
the cost of optimization in terms of time by a factor of n/10 and memory by a factor
between

√
n and n. Importantly, it also often reduces the number of function evalua-

tions required to find the optimum. The idea to store a limited number of vectors and
use them to adapt an intrinsic coordinate system is not the only but one of probably
very few ways to efficiently search in large scale continuous domains. We propose two
quite similar alternatives: i) the storage of points and a later estimation of descent di-
rections from differences of these points, and ii) the use of a reduced matrix m × n as
in (Knight and Lunacek, 2007) but with a modified sampling procedure to obtain lin-
ear time complexity as proposed for the Adaptive Coordinate Descent by Loshchilov
(2013b).

The use of the Population Success Rule is rather optional and alternative step-size
adaptation procedures can be applied. However, we find its similarity with the 1/5-th
rule quite interesting. The procedure does not make any assumption about the sam-
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pling distribution, this allowed to use the Rademacher distribution. When n is large,
the sampling from a n-dimensional Rademacher distribution resembles the sampling
from a n-dimensional Gaussian distribution since the probability mass of the latter is
concentrated in a thin annulus of width O(1) at radius

√
n.

The presented comparison shows that LM-CMA outperforms other evolutionary
algorithms and is comparable to L-BFGS on non-trivial large scale optimization prob-
lems when the black-box (derivative-free) scenario is considered. Clearly, the black-box
scenario is a pessimistic scenario but a substantial part of works that use finite differ-
ence methods for optimization deal with this scenario, and, thus, can consider LM-
CMA as an alternative. Importantly, LM-CMA is invariant to rank-preserving transfor-
mations of the objective function and therefore is potentially more robust than L-BFGS.
The results shown in Figure 7 suggest that the use of a smaller number of direction vec-
tors m can be still efficient, i.e., more efficient algorithms, e.g., with adaptive m (or an
adaptive m × n transformation matrix) can be designed. It seems both promising and
feasible to extend the algorithm to constrained, noisy and/or multi-objective optimiza-
tion, the domains, which are both hardly accessible for L-BFGS and keenly demanded
by practitioners. As an important contribution to the success in this direction, it would
be helpful to implement online adaptation of internal hyper-parameters as already im-
plemented in the original CMA-ES (Loshchilov, 2014). This would ensure an additional
level of invariance and robustness on large scale black-box optimization problems.
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