C. A. Andersson and R. Bro, The N-way Toolbox for MATLAB, Chemometrics and Intelligent Laboratory Systems, vol.52, issue.1, pp.1-4, 2000.
DOI : 10.1016/S0169-7439(00)00071-X

C. J. Appellof and E. Davidson, Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents, Analytical Chemistry, vol.53, issue.13, pp.2053-2056, 1981.
DOI : 10.1021/ac00236a025

B. W. Bader and T. G. Kolda, Efficient MATLAB Computations with Sparse and Factored Tensors, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.205-231, 2007.
DOI : 10.1137/060676489

M. Baskaran, B. Meister, N. Vasilache, and R. Lethin, Efficient and scalable computations with sparse tensors, 2012 IEEE Conference on High Performance Extreme Computing, pp.1-6, 2012.
DOI : 10.1109/HPEC.2012.6408676

M. M. Baskaran, B. Meister, and R. Lethin, Low-overhead load-balanced scheduling for sparse tensor computations, 2014 IEEE High Performance Extreme Computing Conference (HPEC), pp.1-6, 2014.
DOI : 10.1109/HPEC.2014.7041006

J. Bennett and S. Lanning, The netflix prize, Proceedings of KDD cup and workshop, p.35, 2007.

A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Jr et al., Toward an architecture for never-ending language learning PaToH: A Multilevel Hypergraph Partitioning Tool, Version 3.0, AAAI, 1999.

J. H. Choi and S. V. Vishwanathan, DFacTo: Distributed factorization of tensors, 27th Advances in Neural Information Processing Systems, pp.1296-1304, 2014.

P. Comon, Tensors : A brief introduction, IEEE Signal Processing Magazine, vol.31, issue.3, pp.44-53, 2014.
DOI : 10.1109/MSP.2014.2298533

URL : https://hal.archives-ouvertes.fr/hal-00923279

L. , D. Lathauwer, B. De, and . Moor, From matrix to tensor: Multilinear algebra and signal processing, Institute of Mathematics and Its Applications Conference Series, pp.1-16, 1998.

L. De-lathauwer, B. De, J. Moor, and . Vandewalle, A Multilinear Singular Value Decomposition, SIAM Journal on Matrix Analysis and Applications, vol.21, issue.4, pp.1253-1278, 2000.
DOI : 10.1137/S0895479896305696

L. Eldén and B. Savas, A Newton???Grassmann Method for Computing the Best Multilinear Rank-$(r_1,$ $r_2,$ $r_3)$ Approximation of a Tensor, SIAM Journal on Matrix Analysis and Applications, vol.31, issue.2, pp.248-271, 2009.
DOI : 10.1137/070688316

O. Görlitz, S. Sizov, and S. Staab, Pints: Peer-to-peer infrastructure for tagging systems, Proceedings of the 7th International Conference on Peer-to-peer Systems, IPTPS'08, p.19, 2008.

V. Hernandez, J. E. Roman, and V. Vidal, SLEPc, ACM Transactions on Mathematical Software, vol.31, issue.3, pp.31351-362, 2005.
DOI : 10.1145/1089014.1089019

V. Hernández, J. E. Román, and A. Tomás, Restarted Lanczos bidiagonalization for the SVD in SLEPc, 2007.

V. Hernández, J. E. Román, and A. Tomás, A robust and efficient parallel SVD solver based on restarted Lanczos bidiagonalization, Electronic Transactions on Numerical Analysis, vol.31, pp.68-85, 2008.

I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos, HaTen2: Billion-scale tensor decompositions, 2015 IEEE 31st International Conference on Data Engineering, pp.1047-1058, 2015.
DOI : 10.1109/ICDE.2015.7113355

U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos, GigaTensor, Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, KDD '12, pp.316-324, 2012.
DOI : 10.1145/2339530.2339583

K. Kaya, F. Rouet, and B. Uçar, On Partitioning Problems with Complex Objectives, Euro-Par 2011: Parallel Processing Workshops, pp.334-344, 2012.
DOI : 10.1007/978-3-642-29737-3_38

URL : https://hal.archives-ouvertes.fr/hal-00763548

O. Kaya and B. Uçar, Scalable sparse tensor decompositions in distributed memory systems, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.1-77, 2015.
DOI : 10.1145/2807591.2807624

URL : https://hal.archives-ouvertes.fr/hal-01148202

O. Kaya and B. Uçar, High performance parallel algorithms for Tucker decompositions of higher order sparse tensors, 2015.

H. A. Kiers and A. Der-kinderen, A fast method for choosing the numbers of components in Tucker3 analysis, British Journal of Mathematical and Statistical Psychology, vol.56, issue.1, pp.119-125, 2003.
DOI : 10.1348/000711003321645386

T. Kolda and B. Bader, The TOPHITS model for higher-order web link analysis, Proceedings of Link Analysis, Counterterrorism and Security, 2006.

T. Kolda and B. Bader, Tensor Decompositions and Applications, SIAM Review, vol.51, issue.3, pp.455-500, 2009.
DOI : 10.1137/07070111X

T. G. Kolda and J. Sun, Scalable Tensor Decompositions for Multi-aspect Data Mining, 2008 Eighth IEEE International Conference on Data Mining, pp.363-372, 2008.
DOI : 10.1109/ICDM.2008.89

J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, An input-adaptive and in-place approach to dense tensor-times-matrix multiply, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '15, pp.1-76
DOI : 10.1145/2807591.2807671

K. Maruhashi, F. Guo, and C. Faloutsos, MultiAspectForensics: Pattern Mining on Large-Scale Heterogeneous Networks with Tensor Analysis, 2011 International Conference on Advances in Social Networks Analysis and Mining, pp.203-210, 2011.
DOI : 10.1109/ASONAM.2011.80

A. Pinar and B. Hendrickson, Partitioning for complex objectives, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001, p.121, 2001.
DOI : 10.1109/IPDPS.2001.925098

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. E. Roman, C. Campos, E. Romero, and A. Tomas, SLEPc users manual, D. Sistemes Informàtics i Computació, 2015.

S. Smith and G. Karypis, DMS: Distributed sparse tensor factorization with alternating least squares, 2015.

S. Smith, N. D. Ravindran, G. Sidiropoulos, and . Karypis, SPLATT: Efficient and Parallel Sparse Tensor-Matrix Multiplication, 2015 IEEE International Parallel and Distributed Processing Symposium, pp.61-70, 2015.
DOI : 10.1109/IPDPS.2015.27

M. A. Vasilescu and D. Terzopoulos, Multilinear Analysis of Image Ensembles: TensorFaces, Computer Vision?ECCV 2002, pp.447-460, 2002.
DOI : 10.1007/3-540-47969-4_30