MULTICHANNEL AUDIO SOURCE SEPARATION WITH PROBABILISTIC REVERBERATION MODELING

Abstract : In this paper we show that considering early contributions of mixing filters through a probabilistic prior can help blind source separation in reverberant recording conditions. By modeling mixing filters as the direct path plus R−1 reflections, we represent the propagation from a source to a mixture channel as an autoregressive process of order R in the frequency domain. This model is used as a prior to derive a Maximum A Posteriori (MAP) estimation of the mixing filters using the Expectation-Maximization (EM) algorithm. Experimental results over reverberant synthetic mixtures and live recordings show that MAP estimation with this prior provides better separation results than a Maximum Likelihood (ML) estimation.
Type de document :
Communication dans un congrès
IEEE. Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2015, New Paltz, NY, United States. pp.5, 2015, 〈http://www.waspaa.com/〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01219635
Contributeur : Roland Badeau <>
Soumis le : vendredi 23 octobre 2015 - 00:00:59
Dernière modification le : jeudi 11 janvier 2018 - 06:23:39
Document(s) archivé(s) le : vendredi 28 avril 2017 - 06:57:28

Fichier

Leglaive-WASPAA-2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01219635, version 1

Citation

Simon Leglaive, Roland Badeau, Gaël Richard. MULTICHANNEL AUDIO SOURCE SEPARATION WITH PROBABILISTIC REVERBERATION MODELING. IEEE. Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), Oct 2015, New Paltz, NY, United States. pp.5, 2015, 〈http://www.waspaa.com/〉. 〈hal-01219635〉

Partager

Métriques

Consultations de la notice

191

Téléchargements de fichiers

205