Latent Max-margin Metric Learning for Comparing Video Face Tubes

Abstract : Comparing " face tubes " is a key component of modern systems for face biometrics based video analysis and annotation. We present a novel algorithm to learn a distance metric between such spatio-temporal face tubes in videos. The main novelty in the algorithm is based on incorporation of latent variables in a max-margin metric learning framework. The latent formulation allows us to model, and learn metrics to compare faces under different challenging variations in pose, expressions and lighting We propose a novel dataset named TV Series Face Tubes (TSFT) for evaluating the task. The dataset is collected from 12 different episodes of 8 popular TV series and has 94 subjects with 569 manually annotated face tracks in total. We show quantitatively how incorporating latent variables in max-margin metric learning leads to improvement of current state-of-the-art metric learning methods for the two cases when the testing is done with subjects that were seen during training and when the test subjects were not seen at all during training. We also give results on a challenging benchmark dataset: YouTube faces, and place our algorithm in context w.r.t. existing methods.
Type de document :
Communication dans un congrès
Biometrics Workshop, Computer Vision and Pattern Recognition (CVPR), Jun 2015, Boston, United States. 2015
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01219829
Contributeur : Gaurav Sharma <>
Soumis le : vendredi 23 octobre 2015 - 13:25:33
Dernière modification le : mercredi 31 janvier 2018 - 15:08:01
Document(s) archivé(s) le : vendredi 28 avril 2017 - 05:38:10

Fichier

sharma_cvprw15.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01219829, version 1

Citation

Gaurav Sharma, Patrick Pérez. Latent Max-margin Metric Learning for Comparing Video Face Tubes. Biometrics Workshop, Computer Vision and Pattern Recognition (CVPR), Jun 2015, Boston, United States. 2015. 〈hal-01219829〉

Partager

Métriques

Consultations de la notice

12

Téléchargements de fichiers

49