Vibration Monitoring by Eigenstructure Change Detection Based on Perturbation Analysis

Michael Döhler 1 Qinghua Zhang 1 Laurent Mevel 1
1 I4S - Statistical Inference for Structural Health Monitoring
IFSTTAR/COSYS - Département Composants et Systèmes, Inria Rennes – Bretagne Atlantique
Abstract : Vibration monitoring, notably in the fields of civil, mechanical and aeronautical engineering, aims at detecting damages at an early stage, in general by using output-only vibration measurements under ambient excitation. In this paper, a new method is proposed for the detection of small changes in the eigenstructure of such systems. The main idea is to transform the multiplicative eigenstructure change detection problem to an additive one, by means of perturbation analysis based on the assumption of small eigenstructure changes. Another transformation then further simplifies the detection problem into the framework of a linear regression subject to additive white Gaussian noises, leading to a numerically efficient solution of the considered problem. Compared to existing methods, it has the advantages of focusing on chosen system parameters and efficiently addressing random uncertainties. A numerical example of a simulated mechanical structure and a lab experiment on a beam, each with the detection of different damages, are reported.
Type de document :
Communication dans un congrès
SYSID - 17th IFAC Symposium on System Identification, Oct 2015, Beijing, China. 〈10.1016/j.ifacol.2015.12.261〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01220284
Contributeur : Michael Döhler <>
Soumis le : lundi 26 octobre 2015 - 09:29:30
Dernière modification le : mercredi 11 avril 2018 - 02:01:12
Document(s) archivé(s) le : mercredi 27 janvier 2016 - 12:20:25

Fichier

sysid2015eigenstructure_final....
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michael Döhler, Qinghua Zhang, Laurent Mevel. Vibration Monitoring by Eigenstructure Change Detection Based on Perturbation Analysis. SYSID - 17th IFAC Symposium on System Identification, Oct 2015, Beijing, China. 〈10.1016/j.ifacol.2015.12.261〉. 〈hal-01220284〉

Partager

Métriques

Consultations de la notice

320

Téléchargements de fichiers

121