Total progeny in killed branching random walk

Abstract : We consider a branching random walk for which the maximum position of a particle in the $n$'th generation, $M_n$, has zero speed on the linear scale: $M_n/n \to 0$ as $n\to\infty$. We further remove (``kill'') any particle whose displacement is negative, together with its entire descendence. The size $Z$ of the set of un-killed particles is almost surely finite. In this paper, we confirm a conjecture of Aldous that $\mathbf E[Z]<\infty$ while $\mathbf E [Z\log Z]=\infty$. The proofs rely on precise large deviations estimates and ballot theorem-style results for the sample paths of random walks.
Type de document :
Article dans une revue
Probability Theory and Related Fields, Springer Verlag, 2011, 151, pp.265-295. 〈10.1007/s00440-010-0299-2〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01220798
Contributeur : Nicolas Broutin <>
Soumis le : mardi 27 octobre 2015 - 00:51:12
Dernière modification le : mardi 17 avril 2018 - 11:30:53

Lien texte intégral

Identifiants

Collections

Citation

L. Addario-Berry, Nicolas Broutin. Total progeny in killed branching random walk. Probability Theory and Related Fields, Springer Verlag, 2011, 151, pp.265-295. 〈10.1007/s00440-010-0299-2〉. 〈hal-01220798〉

Partager

Métriques

Consultations de la notice

146