The Classification of Pavement Crack Image Based on Beamlet Algorithm

Abstract : Pavement distress, the various defects such as holes and cracks, represent a significant engineering and economic concern. This paper based on Beamlet algorithm using MATLAB software to process the pavement crack images and classify the different cracks into four types: horizontal, vertical, alligator, and block types. Experiment results show that the proposed method can effectively detect and classify of the pavement cracks with a high success rate, in which transverse crack and longitudinal crack detection rate reach to 100%, and alligator crack and block crack reach more than 85%.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.129-137, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_13〉
Liste complète des métadonnées

Littérature citée [6 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01220821
Contributeur : Hal Ifip <>
Soumis le : mardi 27 octobre 2015 - 08:24:18
Dernière modification le : mercredi 17 janvier 2018 - 10:45:36
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:20:38

Fichier

978-3-642-54341-8_13_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Aiguo Ouyang, Qin Dong, Yaping Wang, Yande Liu. The Classification of Pavement Crack Image Based on Beamlet Algorithm. Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.129-137, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_13〉. 〈hal-01220821〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

30