Daily Sales Forecasting for Grapes by Support Vector Machine

Abstract : In this article, the quantity of grapes sold in one fruit shop of an interlocking fruit supermarket is forecasted by the method of support vector machine (SVM) based on deficient data. Since SVMs have a lot advantages such as great generalization performance and guarantying global minimum for given training data, it is believed that support vector regression will perform well for forecasting sales of grapes. In order to improve forecasting precision (FP), this article quantifies the factors affecting the sales forecast of grapes such as weather and weekend or weekday, results are suitable for real situations. In this article, we apply ε-SVR and LS-SVR to forecast sales of three varieties of grapes. Moreover, the artificial neural network (ANN) and decision tree (DT) are used as contrast and numerical experiments show that forecasting systems with SVMs is better than ANN and DT to forecast the daily sales of grapes overall.
Type de document :
Communication dans un congrès
Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.351-360, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_37〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01220846
Contributeur : Hal Ifip <>
Soumis le : mardi 27 octobre 2015 - 08:28:53
Dernière modification le : mercredi 17 janvier 2018 - 10:45:35
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 10:21:33

Fichier

978-3-642-54341-8_37_Chapter.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Qian Wen, Weisong Mu, Li Sun, Su Hua, Zhijian Zhou. Daily Sales Forecasting for Grapes by Support Vector Machine. Daoliang Li; Yingyi Chen. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. Springer, IFIP Advances in Information and Communication Technology, AICT-420 (Part II), pp.351-360, 2014, Computer and Computing Technologies in Agriculture VII. 〈10.1007/978-3-642-54341-8_37〉. 〈hal-01220846〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

166