Skip to Main content Skip to Navigation
Conference papers

Chinese Web Content Extraction Based on Naïve Bayes Model

Abstract : As the web content extraction becomes more and more difficult, this paper proposes a method that using Naive Bayes Model to train the block attributes eigenvalues of web page. Firstly, this method denoising the web page, represents it as a DOM tree and divides web page into blocks, then uses Naive Bayes Model to get the probability value of the statistical feature about web blocks. At last, it extracts theme blocks to compose content of web page. The test shows that the algorithm could extract content of web page accurately. The average accuracy has reached up to 96.2%.The method has been adopted to extract content for the off-portal search of Hunan Farmer Training Website, and the efficiency is well.
Document type :
Conference papers
Complete list of metadata

Cited literature [14 references]  Display  Hide  Download
Contributor : Hal Ifip Connect in order to contact the contributor
Submitted on : Tuesday, October 27, 2015 - 8:29:45 AM
Last modification on : Wednesday, January 17, 2018 - 10:46:41 AM
Long-term archiving on: : Thursday, January 28, 2016 - 10:24:38 AM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License



Wang Jinbo, Wang Lianzhi, Gao Wanlin, Yu Jian, Cui Yuntao. Chinese Web Content Extraction Based on Naïve Bayes Model. 7th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Sep 2013, Beijing, China. pp.404-413, ⟨10.1007/978-3-642-54341-8_42⟩. ⟨hal-01220851⟩



Record views


Files downloads