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A differential evolution-based approach for fitting a
nonlinear biophysical model to fMRI BOLD data

Pablo Mesejo, Sandrine Saillet, Olivier David, Christian Bénar, Jan M. Warnking and Florence Forbes

Abstract—Physiological and biophysical models have been
proposed to link neuronal activity to the Blood Oxygen Level-
Dependent (BOLD) signal in functional MRI (fMRI). Those
models rely on a set of parameter values that cannot always
be extracted from the literature. In some applications, inter-
esting insight into the brain physiology or physiopathology
can be gained from an estimation of the model parameters
from measured BOLD signals. This estimation is challenging
because there are more than 10 potentially interesting parameters
involved in nonlinear equations and whose interactions may result
in identifiability issues. However, the availability of statistical
prior knowledge about these parameters can greatly simplify
the estimation task. In this work we focus on the extended
Balloon model and propose the estimation of 15 parameters
using two stochastic approaches: an Evolutionary Computation
global search method called Differential Evolution (DE) and a
Markov Chain Monte Carlo version of DE. To combine both the
ability to escape local optima and to incorporate prior knowledge,
we derive the target function from Bayesian modeling. The
general behavior of these algorithms is analyzed and compared
with the de facto standard Expectation Maximization Gauss-
Newton (EM/GN) approach, providing very promising results
on challenging real and synthetic fMRI data sets involving rats
with epileptic activity. These stochastic optimizers provided a
better performance than EM/GN in terms of distance to the
ground truth in 4 out of 6 synthetic data sets and a better signal
fitting in 12 out of 12 real data sets. Non-parametric statistical
tests showed the existence of statistically significant differences
between the real data results obtained by DE and EM/GN.
Finally, the estimates obtained from DE for these parameters
seem both more realistic and more stable or at least as stable
across sessions as the estimates from EM/GN.

Index Terms—functional MRI, Biophysical Parameters Esti-
mation, Differential Evolution, Stochastic Optimization.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a neu-
roimaging modality to study brain function. The most common
fMRI signal is the Blood-Oxygen-Level-Dependent (BOLD)
signal, related to local changes in the concentration of de-
oxyhemoglobin. The relationship between the BOLD signal
and neuronal activity is indirect: an increase in synaptic
activity triggers focal vasodilation, leading to local functional
hyperemia (the local increase of blood flow to the brain tissue).
This strong increase in blood flow exceeds the relative increase
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in oxygen consumption, leading to an overall increase in blood
oxygenation and, thus, an increase in the MRI signal.

Usually, BOLD fMRI data are analyzed by comparing the
measured dynamic signal in each voxel to a linear model
of predicted responses obtained by convolving the known
experimental design (“paradigm”) with an assumed hemody-
namic response function. However, the dynamics underlying
neural activity and hemodynamic physiology are believed
to be nonlinear and there is an increasing interest in using
physiologically plausible models in fMRI analysis. In the past
fifteen years, physiological models have been proposed to
describe the processes that link neuronal and hemodynamic
activities in the brain. Different variations of the widely used
“Balloon model”[1] have been introduced to provide a high-
level description of the physiological processes underlying the
hemodynamic response, from neuronal activation to the BOLD
signal [2], [3]. These models depend on several physiological
parameters for which different competing values have been
proposed in the literature [3], [4]. Most approaches currently
use one of these empirical sets of values [5], [6], [7], although
it has been shown that the selection of these parameters had a
more critical impact than the choice of the Balloon model
variant itself [5], [7]. Identifying the model describing the
neurovascular coupling is required if accurate inferences on
the timing on the underlying neuronal signals are to be made,
such as in dynamic causal modelling (DCM) [8]. The aim of
the present work is to estimate the underlying physiological
parameters from observed BOLD data in a single brain region
to obtain relevant neuropathophysiological information on the
animal or patient studied.

A general method for estimating parameters involved in a
dynamic system has been proposed [9], based on a Bayesian
inversion scheme which allows the incorporation of prior
knowledge. Such a priori knowledge is typically summarized
by a Gaussian distribution for each physiological parameter
and provides a generally accepted consensus avoiding the
commitment to arbitrarily fixed values. The method in [9] has
then been widely used as the method of reference to estimate
the hemodynamic response in DCM, and is implemented in
the Statistical Parametric Mapping (SPM) software [10]. It is
based on an Expectation-Maximization Gauss-Newton search
(EM/GN) which requires a Laplace approximation to estimate
the conditional expectation and covariance of the parameters.
Alternative approaches include sampling, e.g. Monte Carlo
Markov Chain (MCMC), or other stochastic techniques, e.g.
Metaheuristics (MHs). Sampling techniques offer a number
of attractive features such as robust and reliable performance,
and ability to escape local optima. MHs are in addition zero-
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order optimization algorithms that do not even require the
availability of the objective function in analytic form.

MHs have successfully been used in biomedical data analy-
sis problems [11], [12]. In particular, they have been employed
to find optimal experimental designs for event-related fMRI
experiments [13], [14], [15] and to investigate whether they
can accelerate the model search in DCM [16]. In the DCM
context, the need for the Laplace approximation can be relaxed
by a MCMC implementation of the Bayesian inversion scheme
and it can be shown that the Laplace approximation actually
yields sensible inferences under a large set of conditions [17].
However, the work cited above focuses on DCM and neuronal
parameter estimation while nothing is reported on the impact
on the non-neuronal physiological parameters. Furthermore,
MCMC usually needs thousands of iterations to converge,
constraints are not easy to introduce (compared to MHs)
and it does not provide mechanisms to control the trade-off
exploration-exploitation1. This prevents estimating more than
a few parameters in practice. A different approach considers
the Balloon model in a non-Bayesian setting using standard
MHs with an objective function, or so-called fitness function2,
which does not include prior information [18]. Without such
valuable prior knowledge, it is quite challenging to include
all the parameters into the proposed optimization scheme due
to potential identifiability issues. It results that this approach
is limited to the estimation of 3 out of the 15 physiological
parameters considered in this paper.

In this work, our goal is to combine both the benefits from a
Bayesian approach which allows incorporation of prior knowl-
edge and from general-purpose global optimization techniques
able to effectively explore the search space. Traditionally, an
EM/GN optimization procedure is run starting from the prior
mean estimates for each parameter. However, in this paper we
are concerned with the study of other alternatives to this ap-
proach, and we analyze the average behavior of two stochastic
algorithms when solving this problem (so that a potential user
can know what to expect when using each of the proposed
methods). According to the Bayesian inversion scheme of [9],
we derive a fitness function that is directly comparable to the
one employed by the EM/GN search within the SPM software
package. It follows an estimation procedure able to estimate all
physiological parameters of interest while being less likely to
get trapped in local optima. This novel method is assessed on
challenging real and synthetic EEG/fMRI data sets obtained in
rats exhibiting epileptic activity. A qualitative and quantitative
comparison between two stochastic approaches and with the
EM/GN approach shows the ability of stochastic methods, and
in particular MH-based approaches, to provide physiologically
plausible parameter values without the need of computing
derivatives or estimating complex functionals. We believe the
idea of a principled Bayesian-driven MH method is new in
this context and we used it to address the challenging issue of

1Diversification/exploration implies generating diverse solutions to explore
the search space on a global scale, and intensification/exploitation implies
focusing the search onto a local region where good solutions have been found.

2We use the term fitness function, rather than objective or cost function,
because this is the term most commonly used within the evolutionary com-
putation research. This fitness function traditionally needs to be minimized.

estimating 15 parameters which are traditionally manually set
or, for only a few of them, determined by using conventional
but potentially suboptimal local search methods like EM/GN.
This could have a strong impact on a number of fMRI studies.

II. THE EXTENDED BALLOON MODEL

The Balloon model was first proposed in [1] to link neuronal
and vascular processes by considering the venous vascular
compartment as a balloon that inflates passively under the
effect of actively controlled upstream blood flow variations.
More specifically, the model describes how, after some input
to the neuronal population, local arteriolar blood flow fin(t)
increases and leads to the subsequent augmentation of the
local deoxygenated blood volume v(t). The incoming blood is
strongly oxygenated and, since the relative blood flow increase
exceeds the increase in oxygen consumption, local deoxyhe-
moglobin concentration q(t) decreases and induces a BOLD
signal increase. This model was subsequently extended [3] to
include the effect of neuronal activity on the variation of some
auto-regulated flow inducing signal s(t) so as to eventually
link neuronal to hemodynamic activity. Variable ne(t) repre-
sents the activity of the excitatory neuron population and ni(t)
the inhibitory neuron population [19]. The experimentally
controlled input function (stimulus) is represented by u(t). In
the following, the explicit time dependence ‘(t)’ of the state
variables will be omitted for compactness. The global physio-
logical model corresponds to a nonlinear system with six state
variables x = {ne, ni, s, fin, v, q} related to the excitatory
and inhibitory neuronal activity, normalized flow inducing
signal, local blood flow, local deoxygenated blood volume, and
deoxyhemoglobin concentration. Their interactions over time
are described by the following nonlinear differential equations:
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From these state variables, the observed BOLD signal y is
derived using an observation equation that includes intra- and
extravascular BOLD signal components [2]:

y = V0

[
k1 (1− q) + k2

(
1− q

v

)
+ k3 (1− v)

]
(2)

where k1, k2, k3 are physiology- and scanner-dependent
constants k1 = 4.3 θ0E0TE, k2 = ε r0E0 TE and k3 = 1−ε,
in their updated version with respect to the original formula-
tion [7]. The value θ0 is the frequency offset at the outer
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surface of the magnetized vessel for fully deoxygenated blood,
40.3 Hz · b0/1.5 T, scaled linearly from the SPM default value
of 40.3 Hz at 1.5 T to the magnetic field strength b0 the
MRI data were acquired at. The echo time is represented
by TE and r0 is the slope of the relation between the
intra-vascular relaxation rate and oxygen saturation, which
is set to 300 Hz for a magnetic field strength of 4.7 T, a
hematocrit of 0.4 and a blood saturation of 0.5 [20]. E0 is
the oxygen extraction fraction at rest and is considered as a
free parameter as well as ε, the ratio of intra- to extra-vascular
BOLD signal. The remaining ones, A, B, C, D and E, are
parameters as in nonlinear DCM [21], D = (D1, D2, D3)T

being the new component in the nonlinear state equation
above. The parameter C is a scaling parameter that converts
the EEG response amplitude to a neuronal stimulus. This
scaling depends on the EEG electrode placement and has
no easily accessible physical meaning. Parameter se is the
spike exponent introduced for the present dataset to control
the scaling of the synaptic activity with respect to the spike
amplitude derived from local field potentials (LFPs), sd is the
vasodilatatory signal decay, ar is the rate constant for autoreg-
ulatory feedback by blood flow, and tt represents the transit
time of blood from the arteriolar to the venous compartment.
The Grubb’s vessel stiffness exponent corresponds to α, while
V0 is the resting venous cerebral blood volume fraction. The
whole model depends on 15 different scalar parameters to
optimize θ = {A,B,C,D, E, se, sd, ar, tt, α,E0, V0, ε}. All
this information is summarized in Table I.

III. BAYESIAN ESTIMATION OF DYNAMICAL SYSTEMS

MHs require the definition of a fitness function to measure
the goodness of the parameters found. We use the Bayesian in-
version scheme of [9] to derive an appropriate fitness function.
In the Balloon model, the first part describes the transitional
dynamics of the state variables x = {ne, ni, s, fin, v, q}.
The system is defined as dx

dt = f(x, u,ψ), with ψ =
{A,B,C,D, E, se, sd, ar, tt, α,E0}. The second part of the
model is the observational equation for the BOLD signal
y which is assumed to be observed with some additive
Gaussian noise3, y = g(x,φ) + η , with φ = {V0, E0, ε}
and η is a random error vector distributed according to the
Gaussian distribution N (0, σ2

ηI) assuming unstructured noise.
Under additional distributional assumptions about the model
parameters θ = {ψ,φ} and noise variance σ2

η , we can apply
Bayesian inference. In [9], Gaussian priors are chosen for all
parameters. As explained in [7] for ε, it is more natural to use
log-normal priors for parameters that are positive. A simple
way to account for positivity while remaining in a Gaussian
setting is to change the model parameterization. We consider
equivalently θ̃ = {Ã, B̃, C̃, D̃, Ẽ, s̃e, s̃d, ãr, t̃t, α̃, Ẽ0, Ṽ0, ε̃},
where {Ã, B̃, C̃, D̃} = {A,B,C,D} remain unchanged
while the other parameters take the form θ̃ = log(θ/µθ)
where the specific µθ values may depend on the experiment
(see section V). An exception is E0 for which we set E0 =

3In this context of BOLD data sampled at discrete time points, we represent
both data and state variables as vectors of discrete samples, not as scalar
continuous functions of time as in section II

arctan(Ẽ0 + tan(π(µE0
− 0.5)))/π + 0.5 in order to ensure

E0 ∈ [0, 1]. Gaussian priors can then be assumed for θ̃ and the
state and observational equations above lead to, y = h(θ̃,u)+
η ,with η ∼ N (0, σ2

ηI), θ̃ ∼ N (θ̄,Σθ) and σ2
η ∼ p(σ2

η) .
In contrast with previous work [9], [7], we use a semi-
conjugate prior for the unknown parameters (θ̃, σ2

η) in which
θ̃ ∼ N (θ̄,Σθ̃) independently of σ2

η and a noninformative prior
is used for σ2

η , i.e. p(σ2
η) ∝ (σ2

η)−1 (see Section 3.4, page 80,
in [24]). Bayesian inference is then based on the posterior
distribution p(θ̃, σ2

η|y) ∝ p(y|θ̃, σ2
η) p(θ̃) p(σ2

η) whose mode
provides the maximum a posteriori (MAP) estimate:

(θ̃, σ2
η)MAP ∈ arg max

θ̃,σ2
η

{log p(y|θ̃, σ2
η) + log p(θ̃) + log p(σ2

η)}

∈ arg min
θ̃,σ2

η

{(N + 2) log σ2
η +
||y − h(θ̃,u)||2

σ2
η

+

(3)

+ (θ̃ − θ̄)TΣ−1
θ̃

(θ̃ − θ̄)} .

where N is the y signal length. Setting the gradient with
respect to σ2

η to zero yields (σ2
η)MAP = ||y−h(θ̃MAP ,u)||2

N+2 .
Plugging (σ2

η)MAP into expression (3) leads to

θ̃MAP ∈ arg min
θ̃
{(N + 2) log ||y − h(θ̃,u)||2+ (4)

+ (θ̃ − θ̄)TΣ−1
θ̃

(θ̃ − θ̄)} .

Expression (4) corresponds to the fitness function to be
optimized by the stochastic approaches. In contrast to the
conventional Laplace approximation and EM estimation al-
gorithm, evolutionary computation (EC) does not require the
linearization or approximation of h(θ̃,u). It does not require
an analytic form of the likelihood and h(θ̃,u) can typically
be used as a numerical function. Another advantage of EC
is its flexibility in particular as regards hard constraints often
imposed for stability of the differential equations (1). The hy-
perparameters θ̄ and Σθ are specified in section V. We adapted
the values used in SPM corresponding to human physiology
to anesthesized rats based on [8], [22], [23] as specified in
Table I. ΣC̃ was chosen to result in a non-informative prior
to reflect the variable nature of that parameter.

IV. METHODS

A. Differential Evolution
Evolutionary computation methods are population-based

and derivative-free MH algorithms [25] that try to reproduce
natural evolution processes to reach a target which is generally
represented as a fitness function to optimize. In practice, they
implement an iterative process in which solutions “evolve”
over generations until they converge to an optimum, starting
from an initial pool of randomly generated solutions and
without relying on first or second order information. EC
procedures are MH algorithms based on achieving a trade-
off between intensification (exploitation of the best solutions,
usually through selection operators and replacement strategies)
and diversification (exploration of the search space thanks
to crossover and mutation operators). Some relevant mathe-
matical proofs can be found in the literature about the MHs
convergence properties [26], [27], [28].
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TABLE I
DEFINITION AND PRIORS FOR EACH OF THE 15 PARAMETERS OPTIMIZED. THE PRIOR MEANS CORRESPOND TO THE PHYSICAL MODEL PARAMETERS AS

USED IN EQ. 1 (θ), THE PRIOR COVARIANCE VALUES CORRESPOND TO THE TRANSFORMED VALUES AS OPTIMIZED BY EACH OPTIMIZER (θ̃). PRIOR
MEANS FOR THE PHYSIOLOGICAL PARAMETERS ADAPTED TO ANESTHETIZED RATS WERE TAKEN FROM † SPM DEFAULTS, ‡ [8], AND ? [22], [23]

.

Parameter Definition Prior Mean (µθ) Re-Parametrization Formula Prior Covariance (Σθ̃)

A
Intrinsic coupling from
inhibitory to excitatory neuron
populations within the region

0 A = Ã 0.25

B
Strength of the modulation of
inhibitory to excitatory
connections due to the input u

0 B = B̃ 0.25

C
Gain of direct (exogenous)
inputs to the system (e.g.
sensory stimuli)

0 C = C̃ 55

D

Constants controlling the gating
of the connection between
neuronal populations as a
function of neuronal activity, the
vasoactive signal and blood flow

[0, 0, 0] D = D̃ 0.0498 · [1, 1, 1]

E Decay rate of neuronal activity 1 E = µE · exp(Ẽ) 0.0498

se

Spike exponent introduced for
the present dataset to control the
scaling of the synaptic activity
with respect to the spike
amplitude derived from local
field potentials (LFPs)

1 se = µse · exp(s̃e) 0.1353

sd Vasodilatatory signal decay rate 0.64† sd = µsd · exp(s̃d) 0.1353

ar
Rate constant for autoregulatory
feedback by blood flow 0.41‡ ar = µar · exp(ãr) 0.0498

tt
Transit time of blood from the
arteriolar to the venous
compartment

0.98‡ tt = µtt · exp(t̃t) 0.0498

α
Grubb’s vessel stiffness
exponent 0.32† α = µα · exp(α̃) 0.0067

V0
Resting venous cerebral blood
volume fraction

0.04† V0 = µV0 · exp(Ṽ0) 0.0498

E0
Oxygen extraction fraction at
rest

0.55? E0 = arctan(Ẽ0 + tan(π(µE0 − 0.5)))/π + 0.5 0.0067

ε
Ratio of intra to extravascular
BOLD signal 1 ε = µε · exp(ε̃) 0.1353

In this work, we choose to use Differential Evolution
(DE) [29], which has recently been shown to be one of the
most successful EC methods for global continuous optimiza-
tion and biomedical image analysis problems [30], [31]. DE
perturbs individuals in the current generation by the scaled
differences of other randomly selected and distinct individuals.
In DE, each individual acts as a parent vector, and for each
of them a new solution, called donor vector, is created. In
the basic version of DE, the donor vector for the ith parent
(θ̃i) is generated by combining three random and distinct
elements θ̃r1, θ̃r2 and θ̃r3. The donor vector Vi is computed
as Vi = θ̃r1 + F · (θ̃r2 − θ̃r3), where F (scale factor) is
a parameter that typically lies in the interval [0.4, 1]. The
original method described above is called DE/rand/1, which
means that the first element of the donor vector equation θ̃r1
is randomly chosen and only one difference vector (in this
case θ̃r2 − θ̃r3) is added. After mutation, every parent-donor
pair generates a child (or trial vector) by means of a crossover
operation. The crossover is applied with a certain probability,
defined by a parameter Cr that, like F , is one DE control
parameter. Then, the trial vector is evaluated and its fitness is
compared to the parent’s. The best, in terms of fitness, survives
and will be part of the next generation.

B. Differential Evolution Markov Chain

Differential Evolution Markov Chain (DEMC) [32] is a
population Markov Chain Monte Carlo (MCMC) algorithm,
in which multiple chains are run in parallel. In DEMC the
jumps are a fixed multiple of the differences of two ran-
dom vectors in the population. The scale and orientation of
the jumps in DEMC automatically adapt themselves to the
variance-covariance matrix of the target distribution. The main
advantages of DEMC over conventional MCMC are simplicity,
speed of calculation and convergence, even for nearly collinear
parameters and multimodal densities. For every generation
and member of the population, a candidate solution is created
through DE mutation (strategy DE/rand/1), and the selection
process, by which a candidate solution will substitute an
old one, is guided by the Simulated Annealing (SA) cooling
schedule temperature. In practical terms, DEMC includes a
Metropolis step on DE with multiple chains, in which chains
learn from each other. It could be considered as parallel
adaptive direction sampling with the Gibbs sampling step
replaced by a Metropolis step, or as a non-parametric form
of Random-Walk Metropolis.

C. Expectation-Maximization/Gauss-Newton

The SPM package provides a tool to perform the Bayesian
inversion of a nonlinear model using the EM/GN algorithm
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[9], [33]. The procedure conforms to an EM implementation
of a GN search for the maximum of the conditional or
posterior density. The E-Step uses a Fisher-Scoring scheme
and a Laplace approximation to estimate the conditional
expectation and covariance of the parameters. If the free-
energy starts to increase, a Levenberg-Marquardt scheme is
invoked. The M-Step estimates the precision components in
terms of restricted maximum likelihood point estimators of the
log-precisions. EM/GN stops the process if the improvement
of the fitness function is less than 10−4 between successive
iterations for three iterations in a row. Traditionally, EM/GN
is run from physiologically reasonable parameter values, i.e.
the prior means, which facilitate its convergence to a global
optimum. However, this algorithm is known to be sensitive to
initialization and prone to get stuck in local optima. In this
paper, we also use a stochastic version of EM/GN in which
this local solver is run from multiple starting points.

D. Other methods

Other works [34] cite methods like binary Genetic Al-
gorithm (GA), SA and particle filters to potentially solve a
similar problem. Of the possible methods to compare to, the
EM/GN approach included in SPM is still the most widely
used and constitutes a benchmark for this application, and DE
consistently outperformed other MHs such as binary GA and
SA in many real-world optimization problems over the last
15 years [29]. Other techniques, like particle filters, rely on
critical design choices (number of particles, prior) and their
implementation is difficult for large number of parameters
([34] shows unsatisfying results with very large variances on
real data estimating only 7 parameters).

V. EXPERIMENTAL RESULTS

A. Datasets

1) Real Dataset: The BOLD data used were recorded to
test biophysical models in the context of epileptic activity in
rats. An intracortical silica capillary was surgically implanted
in the right primary somatosensory cortex of male Wistar
rats (∼400 g) and two subdural carbon EEG electrodes were
placed close to the injection site and one over the cerebellum.
Epileptic activity was elicited using bicuculline methochloride
(2.5 mM, 1µl/5 min) injected intra-cortically during the MRI
session. Simultaneous EEG and BOLD-fMRI data were ac-
quired under <2% isoflurane anesthesia. All procedures were
performed according to the French guidelines on the use of
living animals in scientific investigations, with the approval of
the institutional review board.

The EEG/fMRI data were acquired on a 4.7 T Advance III
Bruker Biospec at the Grenoble MRI facility IRMaGe. In each
scan, 300 volumes of five slices (0.25×0.25×0.8 mm3 voxel
size) were acquired using single-shot GE EPI with TE/TR
of 20/600 ms. A total of 3-12 scans were performed for
each of 12 rats (27 min of EEG/fMRI data per animal on
average). The data from 3 animals were unexploitable and thus
excluded from the analysis. Epileptic discharges (EDs) were
automatically identified from the EEG data and ED amplitudes
and onsets were recorded. In order to obtain signals with

adequate SNR, a single average fMRI signal was extracted
for each rat from the largest cluster of significantly active
voxels identified in a linear analysis with a FIR hemodynamic
response model within a manually defined region of interest
around the bicuculline injection site. EEG and BOLD data
from all scans were concatenated to form a single time
series. The fMRI signal size N ranged from 894 to 3576
with a median value of 2684. The EDs were entered in the
biophysical model via the input function u as a series of short
(8 ms) events.

2) Synthetic Dataset: A synthetic dataset was created to
study the methods behavior with data created under controlled
conditions. The animal, whose physiological conditions were
amongst the most stable ones (in this case, rat 9), was selected
as a reference template to create this synthetic dataset, and
the parameter estimates found by EM/GN initialized from
the prior means were defined as the ground truth (GT). The
epileptic spikes from rat 9 were subsampled and AR(1)
autoregressive noise [35] was added. BOLD signals were
generated from either a full set of measured spikes (100%) or a
subset to simulate more sparse events (25%). In a first step, ten
Signal-to-Noise ratios (SNRs) were tested: 10%, 17%, 28%,
46%, 77%, 129%, 215%, 359%, 599% and 1000%. EM/GN
was used to estimate parameters from these data sets and the
Euclidean distance to the GT was computed as a function
of SNR. Based on the results obtained, we generated the
final synthetic data in a second step using three representative
SNRs: 215% (“good fit”), 46% (“intermediate fit”) and 10%
(“bad fit”). These data were subsequently used to compare all
three optimization methods.

B. Methods Configuration

For each dataset, physiological parameters θ are estimated
using the DE and DEMC approaches on θ̃ with the fitness
function shown in Eq. (4) and transforming the resulting θ̃
back into θ. At the end of every EM/GN iteration, Eq. (4) is
used to obtain a fitness value directly comparable to the one
of DE and DEMC. The prior means are then set to θ̄ = 0 and
the prior covariance Σθ̃ is a diagonal matrix containing the
prior variances as shown in Tab. I.

Since DE and DEMC are stochastic approaches, several runs
need to be executed to evaluate the stability and average per-
formance of each method. In this study, 20 runs are performed
on each dataset and the maximum number of iterations per
run is set to 300. The DE parameters used are among the
most common ones in the state of the art [29] and the default
ones used in the codes developed by the authors4: F = 0.85,
Cr = 1, with a DE/local-to-best/1/bin strategy that attempts
a balance between robustness and fast convergence, and a
population size of 150. DEMC uses the same population size
and maximum number of iterations as DE to allow for an easy
comparison between the two stochastic approaches. Also, in
order to study its general behavior, EM/GN [9] was executed
100 times from random initializations (including the prior
means). Finally, DEMC was also run using 1500 iterations
in order to verify the improvement in performance associated

4http : //www1.icsi.berkeley.edu/ ∼ storn/code.html#matl
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with a larger execution time. All methods are implemented
in MATLAB and the total number of runs was 2700, corre-
sponding to 1800 optimization runs with real data (12 rats,
100 repetitions of EM/GN, 20 repetitions of DE and DEMC,
and 10 repetitions using DEMC with 1500 iterations) and 900
optimization runs with synthetic data (6 synthetic datasets,
100 repetitions of EM/GN, 20 repetitions of DE and DEMC,
and 10 repetitions using DEMC with 1500 iterations). Each
EM/GN iteration implies 21 integrations of the differential
equations (the most time consuming task within the fitness
function), while in DE and DEMC each iteration needs 150
integrations (45000 integration operations per run).

The main idea behind the convergence criteria in DE is
that there is a minimum fitness value to reach (FV TR, in
this case 0), and the optimization algorithm will stop its
minimization of function f if either the maximum number
of iterations Iitermax (in this case 300) is reached, like in
DEMC, or the best parameter vector FVbest has found a value
f(FVbest) ≤ FV TR.

To trigger further research in the estimation of biophysical
parameters using neuroscientific models, our synthetic datasets
and the toolbox implementing the proposed approach will be
made publicly available.

C. Synthetic Data Results

The three metrics used to evaluate performance were the
BOLD fitting measure (to be maximized), the fitness value (to
be minimized) and the distance to GT (to be minimized). The
BOLD fitting measure, computed as (dini−dfin)/dini where
dini is the variance of the raw data and dfin is the variance of
the residuals after fitting the model, represents the amount of
variance in the original signal which is explained by the model:
the value is 1 if the fitting is perfect and smaller than 0 if the
final set of parameters found is fitting the actual signal worse
than a zero BOLD signal. In turn, the fitness value corresponds
to the value achieved by the optimization methods according
to Eq. (4), and the GT distance for a particular parameter set θ̂
is determined by the root mean square of ((θ−θ̂)/θ), where θ
is the GT and θ̂ represents the estimated parameter set found
respectively by each optimization algorithm. Importantly, to
compute the GT distance only physiologically meaningful
parameters (last seven parameters in Table I: from sd to
ε) are taken into account. Since EM/GN is very dependent
on the initialization and may perform poorly if the initial
configuration is far from a global optimum, we perform an
outlier rejection procedure prior to calculating the average
performance consisting simply on the removal of solutions
which provide a negative or zero BOLD fitting value.

The mean number of EM/GN iterations to converge was
37±18 (max: 135, min: 11), so the average number of inte-
grations to obtain the final result is 784. Table II contains the
mean and standard deviation of the results obtained by each
method and synthetic dataset. Column 4 indicates the number
of results not taken into account to compute the statistics. We
have also included a column with the solution found running
EM/GN using the prior means as initial values. The last two
columns show the results obtained by DEMC using 1500

iterations to verify the improvement achieved by increasing
the execution time. Fig. 1 displays the distributions of the
parameter estimates found for four physiologic parameters.

Among the methods under comparison, DE shows the most
stable behavior, achieving a similar performance in different
runs. This is confirmed both by the low standard deviation
of the fit quality metrics as well as the reduced variability
in parameter space. EM/GN on the other hand appears to be
very dependent on the initialization and generally shows the
highest spread in all metrics. Also, DE presents on average the
best performance according to the three metrics under consid-
eration. The improvement obtained by DEMC when running
1500 iterations (with respect to using 300 iterations) could
justify the increase in computational time. Within each dataset,
both the BOLD fitting measure as well as the fitness value
are consistently correlated with the GT distance, providing
evidence that these first two measures are good markers of
the quality of the parameter estimates found.

Surprisingly, in Table II, for synthetic dataset 3, increasing
the number of iterations up to 1500 in DEMC degrades the
results in terms of mean GT distance and standard deviation.
A plausible explanation for this phenomenon could be found
in the exploratory nature of DEMC and the characteristics of
the problem at hand. It seems like DEMC intensively explores
the search space and it is able to find very diverse solutions
which are better in terms of BOLD fitting and fitness value.
But, those sets of parameters are progressively different from
the GT. On the other hand, this possible explanation would
go in the same direction that other research works [34], [36],
where very different parameters could give nearly identical
BOLD output; meaning that, without properly constraining
the parameter values, some of them may not be precisely
ascertainable. This could explain discrepancies of parameter
estimates in previous studies.

Fig. 1 shows that, for all four parameters considered here,
the average estimates tend to be generally closer to the GT
than to the prior means. This indicates that these particular
model parameters can be identified from BOLD data.

D. Real Data Results

In EM/GN, the average number of iterations until conver-
gence is 31±18 (max: 128, min: 8) with an average number
of integrations of 646. The median estimates from DE, DEMC
and EM/GN are shown in Table III . The experimental con-
ditions for all animals were controlled as closely as possible.
It is therefore expected that the physiologically meaningful
parameters show limited variability across animals. However,
the parameters related to the scaling of the stimulus (notably,
B, C and se) may vary significantly, since the amplitudes
of the elicited EEG responses varied between sessions. Even
though the administration protocol was performed to be iden-
tical to the extent possible, the amount of the drug that
actually ended up in the tissue likely varied between animals
depending on factors such as the diffusion or leakage of the
drug along the injection path. The injected drug, bicuculline
methochloride, is an antagonist of GABAA receptors, and thus
modulates the coupling from inhibitory to excitatory neurons,
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TABLE II
DE, EM/GN AND DEMC OPTIMIZATION VALUES FOR EACH OF THE 6 SYNTHETIC DATASETS. THE DECIMALS HAVE BEEN REMOVED IN THE MEAN

FITNESS VALUES TO FACILITATE VISUALIZATION AND COMPARISON BETWEEN METHODS. THE BEST RESULTS OBTAINED PER DATASET ARE DISPLAYED
IN BOLD. THE LOWER THE FITNESS VALUE THE BETTER THE RESULT.

EM/GN EM/GN DE DEMC DEMC 1500 iter
Mean Std Out Prior Means Mean Std Mean Std Mean Std

SYNTHETIC DATASET 1 (subsampling 25% and SNR 10%)
BOLD fitting 0.0794 0.0196 5 0.0860 0.0887 0.0054 0.0793 0.0035 0.0969 0.0018
Fitness value 38863 355.23 38776 38763 9.97 38853 14.91 38757 5.98
GT distance 0.98 1.14 0.84 0.53 0.16 0.76 0.59 0.23 0.11

SYNTHETIC DATASET 2 (subsampling 25% and SNR 46%)
BOLD fitting 0.2844 0.0680 10 0.3192 0.3197 0.0001 0.2674 0.0056 0.3077 0.0044
Fitness value 33421 542.26 33188 33177 0.08 33549 44.83 33260 22.37
GT distance 1.33 2.32 0.15 0.16 0.01 0.76 0.43 0.36 0.21

SYNTHETIC DATASET 3 (subsampling 25% and SNR 215%)
BOLD fitting 0.6029 0.1554 8 0.6896 0.6890 0.0006 0.5681 0.0132 0.6081 0.0062
Fitness value 28557 1265.09 27759 27760 10.50 29180 103.20 28783 59.17
GT distance 1.96 3.67 0.71 0.15 0.09 1.34 1.87 4.00 6.06

SYNTHETIC DATASET 4 (subsampling 100% and SNR 10%)
BOLD fitting 0.0777 0.0179 5 0.0707 0.0895 0.0009 0.0748 0.0048 0.0889 0.0003
Fitness value 32747 298.93 32710 32640 1.24 32729 16.15 32641 0.41
GT distance 1.17 1.95 7.65 0.22 0.02 0.53 0.26 0.23 0.04

SYNTHETIC DATASET 5 (subsampling 100% and SNR 46%)
BOLD fitting 0.2479 0.0606 3 0.2785 0.2787 0.0000 0.2396 0.0089 0.2757 0.0015
Fitness value 27401 518.73 27164 27156 0.03 27422 32.93 27175 5.89
GT distance 0.97 1.47 0.68 0.12 0.01 0.52 0.26 0.17 0.07

SYNTHETIC DATASET 6 (subsampling 100% and SNR 215%)
BOLD fitting 0.5871 0.1845 3 0.6671 0.6669 0.0000 0.5873 0.0079 0.6251 0.0111
Fitness value 22357 1400.09 21696 21688 0.24 22689 74.70 22233 77.87
GT distance 1.23 1.67 0.07 0.11 0.00 1.93 2.74 0.78 0.62

Fig. 1. Boxplots for parameters α, tt, ε, V0 for synthetic dataset 2. The green horizontal line represents the GT and the diamond displays the estimate achieved
using EM/GN from the prior means. Since the actual EM/GN spread is much larger in all cases, we have zoomed-in on a sub-interval to better visualize the
differences between the methods. The prior means and prior covariances are displayed as horizontal solid and dashed black lines, respectively.

represented by the parameters A, B and D. We observe
significant variability in these parameters, both across animals
and across optimization methods. Analysis of this variability is
complicated by the fact that A, B and D interact and variations
in one of the parameters may be partially compensated by
variations in another. Thus, the observed variability may also
be due to identifiability issues. Estimates across animals for
four of the parameters that are expected to be among the most
stable, namely ε, α, tt and V0, are shown in Fig. 2.

The estimates found by DEMC for B are less stable and re-
markably lower than the ones found by EM/GN and DE. This
behavior can possibly be explained using the same arguments
used for synthetic dataset 3 in Table II (DEMC exploratory
ability and identifiability issues), and also considering that the

values found for B, due to the complexity of the problem, can
balance out with the values found for other parameters in a
way that can equally result in a good fitness value.

Fig. 3 shows the median fitness evolution for two different
cases (rats 1 and 10, respectively), and also highlights that DE
and DEMC are able to continue exploring the search space,
improving the solutions found, while EM/GN is prone to con-
verge to a local optimum. According to this figure, a smaller
number of DE iterations might have been sufficient to achieve
a good result: the x-axis of Fig. 3 uses a logarithmic scale and,
from iterations 150 to 300, the improvement achieved by DE
is almost irrelevant compared to the doubling in computation
time necessary for the extra 150 iterations.

The values estimated by DE are markedly more stable than
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the values obtained with EM/GN and DEMC. Quantitatively,
the median parameter estimates from all three methods are
plausible. Blood transit times from arterioles to the deoxy-
genated vascular compartment estimated with all methods are
closer to 0.7 s which is somewhat lower than the prior mean
of 0.98 s but still physiologically plausible. Individual runs
of EM/GN can lead to much lower or higher unphysiologic
estimates, depending on the initial value used in the estimation
(Fig. 4 and Tab. III). For comparison, mean transit times across
the entire vascular tree in a cortical voxel observed using DSC
MRI in anesthesized rats are on the order of 1.6 s (from [37]).
Equally, estimated resting venous blood volumes are lower
than the prior estimate of 4% taken from SPM defaults, which
also corresponds to the total cortical resting blood volume in
isoflurane anesthesized male Wistar rats [37]. In hindsight,
the value that should actually be considered in the model is
however only the venous (deoxygenated) fraction of that, such
that a value of 2% actually seems much more realistic than
the much higher values estimated in some of the runs using
EM/GN and DEMC. Finally, all methods on average yield
values for the intra- to extra-vascular BOLD signal ratio and
Grubb exponent that are similar across methods. Estimates
are close to the prior means for the Grubb exponent. Given
the results obtained on synthetic data, this is an indication that
the prior means are close to the unknown GT. In summary, the
estimates obtained from DE for these values seem both more
stable and more realistic or at least as realistic across sessions
as the estimates from EM/GN and DEMC. Fig. 4 displays the
boxplots per method and rat for V0 and tt where DE presents
again a very low variability. It is important to highlight that
EM/GN without at least several runs with different initial
values produces unstable results (both in terms of the fitness
function value, as witnessed by their large standard deviation,
as well as in parameter values, as shown in the boxplots), but
other methods, like DE, can solve this problem in a stable
fashion, given prior information.

The fitness values achieved per method (mean and standard
deviation) are shown in Table IV using the same criteria
as explained in Section V-C. DE again is the best method
in terms of BOLD fitting and fitness value. It is important
to emphasize the different nature of the algorithms under
study: EM/GN works with only one solution in a deterministic
fashion, while DE and DEMC deal with a population of
candidate solutions with a stochastic strategy. Commonly, DE
and DEMC (especially when using 1500 iterations) have a
more stable behavior as reflected in a lower standard devi-
ation. These results can have a decisive impact within the
neuroscientific community since, from the practical point of
view, neuroscientists usually select one single starting solution
and run EM/GN from there, obtaining sometimes reasonable
results but, also quite commonly, clearly improvable ones (in
Table IV, the results obtained by DE outperformed in all cases
the ones obtained by EM/GN from the prior means, i.e. our
best estimate of parameter values based on existing literature).

Statistical tests were performed to study the statistical
significance of the results obtained in terms of BOLD fitting
and fitness value (see Table V): the mean ranks represent the
average position of each method per rat, while the p-value

is computed using a non-parametric statistical test (since the
normality and homoscedasticity assumptions are not met, as
usual with EC methods [38]) between the first method and the
other two. As shown in Table V, DE and DEMC, in real data,
are on average the first and the second best methods according
to both fitness function value and BOLD fitting.

VI. CONCLUSION AND FUTURE WORK

Two stochastic methods (DE and DEMC) have been applied
to estimate biophysical parameters in fMRI data and they have
proven to be able to obtain physiologically feasible results. In
particular, DE shows the robustness and flexibility of global
search optimization methods while being able to incorporate
prior information in a principled Bayesian way. DEMC can
also provide consistent solutions but with a much larger num-
ber of iterations. Preliminary results on real and synthetic data
show that DE is able to achieve sensible parameter estimates
with a more stable and consistent behavior, improving in
terms of fitness value and fMRI signal fitting in real data,
than the traditional and widely used EM/GN approach (de
facto standard in the SPM package). Traditionally in cognitive
neuroscience EM/GN is run from the prior means to obtain
the estimates, but the large spread in parameter values and its
lack of reliability in terms of fitness values provide evidence to
justify the use of stochastic approaches (either EM/GN from
different random initial solutions or a MH-based approach).
The formulation presented here is generic and can be adapted
to other forward generative models that relate neuronal and
physiological variables to macroscopic data (e.g. [39], [40],
[41]), mainly by modifying functions g and h (Section III).

Before issuing a definitive conclusion, DE should be com-
pared with alternative approaches like single-chain adaptive
MCMC [42], Hamiltonian MCMC [43], Belief Propagation
[44] or Langevin diffusion [45]. Also, as future work, we
could take advantage of the inherent property of EC methods
to provide a set of solutions instead of a single one, giving
information about the range of values for each parameter that
are consistent with the data. Testing on multimodal fMRI
data may also help to further improve the reliability of the
parameter estimates, since cerebral blood flow and volume
dynamics can provide additional information.
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TABLE III
DE, EM/GN AND DEMC MEDIAN ESTIMATES FOR EACH OF THE 12 RATS AND EACH PARAMETER IN θ. FOR DE AND DEMC THE VALUES CORRESPOND

TO THE MEDIAN OF 20 VALUES. FOR EM/GN THE VALUES CORRESPOND TO THE MEDIAN OF 100 VALUES.

A B C D1 D2 D3 E se sd ar tt α V0 E0 ε
RAT 1 EM/GN 1.78 -0.04 0.31 0.07 0.10 -0.12 0.70 0.46 2.17 0.34 0.68 0.31 0.041 0.55 1.20

EM/GN priors 1.86 -0.04 0.36 0.12 0.14 -0.12 0.70 0.47 2.20 0.35 0.67 0.31 0.041 0.55 1.08
DE 2.58 -0.02 2.53 0.38 0.06 -0.55 0.61 0.73 1.90 0.39 0.80 0.34 0.023 0.55 0.42
DEMC 1.31 -0.69 0.61 0.24 0.07 -0.04 1.07 0.45 2.15 0.41 0.80 0.30 0.023 0.55 0.86

RAT 2 EM/GN 1.13 0.00 0.22 0.05 0.01 0.10 0.81 0.95 1.04 0.58 0.67 0.32 0.032 0.54 1.17
EM/GN priors 1.24 0.01 0.16 0.05 0.01 0.10 0.82 0.99 1.01 0.62 0.58 0.31 0.037 0.55 1.30
DE 1.28 0.01 0.17 0.05 0.01 0.11 0.80 0.99 1.02 0.61 0.59 0.31 0.037 0.55 1.28
DEMC 0.83 -0.74 0.62 0.05 -0.07 0.37 1.62 1.11 1.53 0.73 0.61 0.33 0.021 0.54 0.77

RAT 3 EM/GN 0.79 0.00 0.26 0.06 0.04 0.00 0.83 0.80 2.50 0.31 0.80 0.32 0.030 0.54 1.04
EM/GN priors 0.20 0.00 0.01 0.00 0.00 0.00 0.96 0.75 0.80 0.44 0.66 0.31 0.049 0.55 1.72
DE -0.50 0.02 3.00 0.34 0.24 0.34 0.88 0.37 1.75 0.24 0.90 0.33 0.021 0.53 0.51
DEMC -0.21 -1.10 2.64 0.35 0.37 0.27 1.09 0.50 1.72 0.32 0.82 0.33 0.016 0.52 0.62

RAT 4 EM/GN 0.88 0.01 0.27 0.03 0.02 0.07 0.66 1.39 1.10 0.55 0.82 0.32 0.033 0.55 0.72
EM/GN priors 0.22 -0.01 0.02 0.01 0.02 0.01 0.79 0.99 0.60 0.44 0.47 0.30 0.056 0.55 2.02
DE 0.89 0.02 0.25 0.03 0.03 0.17 0.66 1.39 1.03 0.55 0.80 0.32 0.035 0.55 0.72
DEMC 0.02 -1.23 1.17 0.28 0.09 0.04 1.82 1.46 1.32 0.71 0.70 0.31 0.018 0.54 0.34

RAT 5 EM/GN 0.88 0.00 1.24 -0.17 -0.18 0.15 0.69 0.56 2.40 0.32 0.83 0.32 0.029 0.55 0.66
EM/GN priors 0.38 -0.01 0.03 0.02 0.02 0.05 0.91 0.62 0.97 0.39 0.33 0.30 0.062 0.55 2.50
DE 0.87 0.01 1.27 -0.17 -0.18 0.15 0.68 0.56 2.42 0.32 0.83 0.32 0.029 0.55 0.65
DEMC -0.14 -0.86 1.74 0.16 0.36 0.37 1.34 0.76 2.24 0.37 0.63 0.34 0.026 0.56 0.49

RAT 6 EM/GN 0.54 0.00 1.20 0.26 -0.01 0.27 0.93 0.89 0.86 0.38 1.28 0.34 0.022 0.54 0.50
EM/GN priors 0.09 -0.01 0.03 0.03 0.04 0.05 0.81 0.79 0.68 0.47 0.59 0.31 0.056 0.55 1.97
DE 0.38 0.01 2.96 0.49 -0.01 0.27 0.82 1.16 0.63 0.33 1.33 0.34 0.020 0.54 0.51
DEMC 0.23 -0.73 1.33 0.11 0.11 0.23 1.54 0.68 1.03 0.52 0.97 0.34 0.019 0.54 0.62

RAT 7 EM/GN -0.15 0.01 2.43 0.30 -0.45 0.12 0.44 0.42 1.80 0.36 0.69 0.34 0.016 0.54 0.37
EM/GN priors -0.15 0.01 2.43 0.30 -0.45 0.12 0.44 0.42 1.80 0.36 0.69 0.34 0.016 0.54 0.37
DE -0.15 0.01 2.47 0.30 -0.45 0.12 0.44 0.42 1.83 0.37 0.70 0.34 0.016 0.54 0.37
DEMC -1.90 -1.09 3.68 -0.16 -0.14 -0.21 1.35 0.12 1.81 0.88 0.56 0.31 0.013 0.56 0.33

RAT 8 EM/GN 0.72 0.00 0.18 0.04 0.04 -0.03 0.90 0.47 1.10 0.55 0.75 0.32 0.027 0.55 0.97
EM/GN priors 0.40 0.00 0.03 0.01 0.01 0.00 0.74 0.39 0.92 0.46 0.54 0.31 0.065 0.55 2.64
DE 0.68 0.02 0.18 0.01 0.01 -0.05 0.95 0.53 1.06 0.56 0.67 0.32 0.037 0.55 1.01
DEMC 0.16 -1.04 0.87 -0.02 0.14 0.05 1.94 0.42 1.50 0.81 0.86 0.34 0.025 0.51 0.54

RAT 9 EM/GN 0.78 0.02 1.46 0.01 -0.02 -0.30 0.38 0.92 2.16 0.41 0.74 0.35 0.022 0.55 0.34
EM/GN priors 0.79 0.02 1.52 0.00 -0.02 -0.30 0.38 0.92 2.16 0.41 0.74 0.35 0.022 0.55 0.34
DE 0.88 0.02 1.89 -0.10 -0.02 -0.26 0.41 0.95 2.37 0.48 0.79 0.36 0.021 0.56 0.34
DEMC -0.08 -1.91 1.75 0.12 0.21 0.17 1.95 0.73 2.48 0.70 0.64 0.35 0.024 0.58 0.35

RAT 10 EM/GN 0.63 -0.01 0.53 0.12 0.22 -0.06 0.64 1.18 1.19 0.43 0.95 0.33 0.026 0.55 0.89
EM/GN priors 0.19 -0.01 0.03 0.06 0.08 0.06 0.72 1.18 0.98 0.40 0.37 0.30 0.063 0.55 2.39
DE 1.41 0.01 1.44 -0.17 0.78 -0.55 0.97 2.10 0.79 0.70 0.64 0.33 0.015 0.55 0.50
DEMC -0.79 -1.06 1.61 0.06 0.12 0.15 1.59 0.71 1.32 0.64 0.99 0.34 0.025 0.56 0.68

RAT 11 EM/GN 0.21 0.00 4.77 -0.02 -0.11 0.01 0.49 0.43 2.04 0.32 0.94 0.32 0.044 0.55 0.88
EM/GN priors 0.45 -0.01 0.03 0.04 0.04 0.07 0.74 0.81 0.81 0.46 0.30 0.30 0.062 0.55 2.54
DE 0.18 0.02 2.96 0.01 -0.39 0.00 0.42 0.33 1.88 0.23 0.68 0.30 0.037 0.54 0.83
DEMC -1.04 -1.20 3.80 0.09 0.10 0.38 1.19 0.48 1.75 0.52 0.61 0.30 0.019 0.54 0.62

RAT 12 EM/GN 1.02 0.00 0.30 0.02 0.05 -0.12 0.65 0.93 2.74 0.31 0.70 0.32 0.034 0.55 1.14
EM/GN priors 0.26 0.00 0.03 0.01 0.01 -0.01 0.82 0.81 2.03 0.26 0.46 0.31 0.061 0.55 2.56
DE 1.02 0.01 0.33 0.04 0.06 -0.28 0.65 1.00 2.86 0.32 0.66 0.32 0.040 0.55 1.12
DEMC 0.66 -1.20 0.64 0.10 0.11 -0.20 1.74 0.95 3.30 0.40 0.67 0.30 0.034 0.58 0.75

Fig. 2. Boxplots of the EM/GN, DE and DEMC results for ε, α, transit time (tt), and V0 using globally all real datasets. The parameters prior mean and
standard deviation are indicated by the horizontal black lines (solid and dashed, respectively). Since the EM/GN variability is much larger in all cases, we
have zoomed-in on a sub-interval for a better visualization.
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TABLE IV
OPTIMIZATION VALUES FOR EACH OF THE 12 RATS. THE DECIMALS HAVE BEEN REMOVED IN THE MEAN FITNESS VALUES. THE BEST RESULTS

OBTAINED PER RAT ARE DISPLAYED IN BOLD. THE LOWER THE FITNESS VALUE THE BETTER THE RESULT.

EM/GN EM/GN DE DEMC DEMC 1500 iter
Mean Std Out Prior Means Mean Std Mean Std Mean Std

RAT 1
BOLD fitting 0.0610 0.0147 4 0.0661 0.0795 0.0001 0.0533 0.0063 0.0784 0.0006
Fitness value 29327 263.25 29254 29231 0.06 29328 14.08 29235 0.50

RAT 2
BOLD fitting 0.0574 0.0168 14 0.0648 0.0676 0.0014 0.0601 0.0047 0.0674 0.0007
Fitness value 21460 1854.90 21074 21075 1.50 21160 18.67 21081 1.20

RAT 3
BOLD fitting 0.0501 0.0190 4 0.0260 0.0875 0.0418 0.0513 0.0083 0.0825 0.0196
Fitness value 24042 275.25 23981 23839 101.08 23983 20.93 23866 30.47

RAT 4
BOLD fitting 0.1309 0.0377 6 0.1170 0.1357 0.0001 0.1262 0.0063 0.1360 0.0010
Fitness value 19677 314.77 19625 19557 0.16 19672 17.30 19565 2.08

RAT 5
BOLD fitting 0.1861 0.0359 1 0.1526 0.2063 0.0001 0.1859 0.0049 0.2051 0.0005
Fitness value 21788 344.19 21836 21639 0.15 21771 23.56 21644 0.91

RAT 6
BOLD fitting 0.2732 0.0762 8 0.2655 0.3351 0.0026 0.2926 0.0108 0.3315 0.0010
Fitness value 7213 372.72 7126 7045 2.33 7145 21.85 7051 0.79

RAT 7
BOLD fitting 0.5620 0.1564 4 0.6266 0.6266 0.0000 0.5964 0.0092 0.6178 0.0017
Fitness value 21086 1111.05 20633 20620 0.01 21050 81.97 20726 17.89

RAT 8
BOLD fitting 0.2119 0.0548 3 0.2287 0.2343 0.0003 0.2186 0.0059 0.2322 0.0009
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