R. B. Buxton, E. C. Wong, and L. R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: The balloon model, Magnetic Resonance in Medicine, vol.77, issue.6, pp.855-864, 1998.
DOI : 10.1002/mrm.1910390602

R. B. Buxton, K. Uluda?, D. J. Dubowitz, and T. T. Liu, Modeling the hemodynamic response to brain activation, NeuroImage, vol.23, pp.220-233, 2004.
DOI : 10.1016/j.neuroimage.2004.07.013

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage, vol.12, issue.4, pp.466-477, 2000.
DOI : 10.1006/nimg.2000.0630

I. Khalidov, J. Fadili, F. Lazeyras, D. Van-de-ville, and M. Unser, Activelets: Wavelets for sparse representation of hemodynamic responses, Signal Processing, vol.91, issue.12, pp.2810-2821, 2011.
DOI : 10.1016/j.sigpro.2011.03.008

A. Frau-pascual, P. Ciuciu, and F. Forbes, Physiological models comparison for the analysis of ASL FMRI data, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1348-1351, 2015.
DOI : 10.1109/ISBI.2015.7164125

URL : https://hal.archives-ouvertes.fr/hal-01249014

A. Frau-pascual, T. Vincent, J. Sloboda, P. Ciuciu, and F. Forbes, Physiologically Informed Bayesian Analysis of ASL fMRI Data, Proc. 1st Int. Workshop Bayesian grAphical Models for Biomed. Imag. (BAMBI), pp.37-48, 2014.
DOI : 10.1007/978-3-319-12289-2_4

URL : https://hal.archives-ouvertes.fr/hal-01107613

K. E. Stephan, N. Weiskopf, P. M. Drysdale, P. A. Robinson, and K. J. Friston, Comparing hemodynamic models with DCM, NeuroImage, vol.38, issue.3, pp.387-401, 2007.
DOI : 10.1016/j.neuroimage.2007.07.040

O. David, I. Guillemain, S. Saillet, S. Reyt, C. Deransart et al., Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation, PLoS Biology, vol.54, issue.12, pp.2683-2697, 2008.
DOI : 10.1371/journal.pbio.0060315.sd002

URL : https://hal.archives-ouvertes.fr/inserm-00356680

K. J. Friston, Bayesian Estimation of Dynamical Systems: An Application to fMRI, NeuroImage, vol.16, issue.2, pp.513-530, 2002.
DOI : 10.1006/nimg.2001.1044

K. Friston, J. Ashburner, S. Kiebel, T. Nichols, and W. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images, 2007.

P. Mesejo, A. Valsecchi, L. Marrakchi-kacem, S. Cagnoni, and S. Damas, Biomedical image segmentation using geometric deformable models and metaheuristics, Computerized Medical Imaging and Graphics, vol.43, pp.167-178, 2015.
DOI : 10.1016/j.compmedimag.2013.12.005

URL : https://hal.archives-ouvertes.fr/hal-01221316

C. Svensson, S. Coombes, and J. W. Peirce, Using Evolutionary Algorithms for Fitting High-Dimensional Models to Neuronal Data, Neuroinformatics, vol.7, issue.2, pp.199-218, 2012.
DOI : 10.1007/s12021-012-9140-7

M. Kao, A. Mandal, N. A. Lazar, and J. Stufken, Multi-objective optimal experimental designs for event-related fMRI studies, NeuroImage, vol.44, issue.3, pp.849-856, 2009.
DOI : 10.1016/j.neuroimage.2008.09.025

T. Wager and T. Nichols, Optimization of experimental design in fMRI: a general framework using a genetic algorithm, NeuroImage, vol.18, issue.2, pp.293-209, 2003.
DOI : 10.1016/S1053-8119(02)00046-0

B. Maus, G. J. Breukelen, R. Goebel, and M. P. Berger, Robustness of optimal design of fMRI experiments with application of a genetic algorithm, NeuroImage, vol.49, issue.3, pp.2433-2443, 2010.
DOI : 10.1016/j.neuroimage.2009.10.004

M. Pyka, D. Heider, S. Hauke, T. Kircher, and A. Jansen, Dynamic causal modeling with genetic algorithms, Journal of Neuroscience Methods, vol.194, issue.2, pp.402-406, 2011.
DOI : 10.1016/j.jneumeth.2010.11.007

J. R. Chumbley, K. J. Friston, T. Fearn, and S. J. Kiebel, A Metropolis???Hastings algorithm for dynamic causal models, NeuroImage, vol.38, issue.3, pp.478-487, 2007.
DOI : 10.1016/j.neuroimage.2007.07.028

V. A. Vakorin, O. O. Krakovska, R. Borowsky, and G. E. Sarty, Inferring neural activity from BOLD signals through nonlinear optimization, NeuroImage, vol.38, issue.2, pp.248-260, 2007.
DOI : 10.1016/j.neuroimage.2007.06.033

A. Marreiros, S. Kiebel, and K. Friston, Dynamic causal modelling for fMRI: A two-state model, NeuroImage, vol.39, issue.1, pp.269-278, 2008.
DOI : 10.1016/j.neuroimage.2007.08.019

M. Silvennoinen, C. Clingman, X. Golay, R. Kauppinen, and P. Van-zijl, Comparison of the dependence of bloodR2 andR2* on oxygen saturation at 1.5 and 4.7 Tesla, Magnetic Resonance in Medicine, vol.43, issue.1, pp.47-60, 2003.
DOI : 10.1002/mrm.10355

K. Stephan, L. Kasper, L. Harrison, J. Daunizeau, H. Den-ouden et al., Nonlinear dynamic causal models for fMRI, NeuroImage, vol.42, issue.2, pp.649-662, 2008.
DOI : 10.1016/j.neuroimage.2008.04.262

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2636907

M. Kobayashi, T. Mori, Y. Kiyono, V. Tiwari, R. Maruyama et al., O-Oxygen with a Steady-State Method, Journal of Cerebral Blood Flow & Metabolism, vol.40, issue.1, pp.33-40, 2012.
DOI : 10.1161/01.STR.20.1.84

T. Watabe, E. Shimosegawa, H. Watabe, Y. Kanai, K. Hanaoka et al., Quantitative Evaluation of Cerebral Blood Flow and Oxygen Metabolism in Normal Anesthetized Rats: 15O-Labeled Gas Inhalation PET with MRI Fusion, Journal of Nuclear Medicine, vol.54, issue.2, pp.283-290, 2013.
DOI : 10.2967/jnumed.112.109751

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2003.

M. D. Vose, The Simple Genetic Algorithm: Foundations and Theory, 1998.

W. Gutjahr, Convergence analysis of metaheuristics, " in Metaheuristics , ser. Annals of Information Systems, pp.159-187, 2010.

X. Yang, Metaheuristic Optimization: Algorithm Analysis and Open Problems, pp.21-32, 2011.
DOI : 10.1007/978-3-642-20662-7_2

S. Das and P. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Transactions on Evolutionary Computation, vol.15, issue.1, pp.4-31, 2011.
DOI : 10.1109/TEVC.2010.2059031

P. Mesejo, R. Ugolotti, F. D. Cunto, M. Giacobini, and S. Cagnoni, Automatic hippocampus localization in histological images using Differential Evolution-based deformable models, Pattern Recognition Letters, vol.34, issue.3, pp.299-307, 2013.
DOI : 10.1016/j.patrec.2012.10.012

Y. S. Nashed, P. Mesejo, R. Ugolotti, J. Dubois-lacoste, and S. Cagnoni, A Comparative Study of Three GPU-Based Metaheuristics, Parallel Problem Solving From Nature (PPSN), 2012, pp.398-407
DOI : 10.1007/978-3-642-32964-7_40

URL : https://hal.archives-ouvertes.fr/hal-01221645

C. J. Ter-braak, A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: easy Bayesian computing for real parameter spaces, Statistics and Computing, vol.69, issue.3, pp.239-249, 2006.
DOI : 10.1007/s11222-006-8769-1

K. Friston, J. Mattout, N. Trujillo-bareto, J. Ashburner, and W. Penny, Variational free energy and the Laplace approximation, NeuroImage, vol.34, issue.1, pp.220-234, 2007.
DOI : 10.1016/j.neuroimage.2006.08.035

M. C. Chambers, Full brain blood-oxygen-level-dependent signal parameter estimation using particle filters, 2010.

S. Makni, P. Ciuciu, J. Idier, and J. Poline, Joint Detection-Estimation of Brain Activity in fMRI using an Autoregressive Noise Model, 3rd IEEE International Symposium on Biomedical Imaging: Macro to Nano, 2006., pp.1048-1051, 2006.
DOI : 10.1109/ISBI.2006.1625101

URL : https://hal.archives-ouvertes.fr/hal-00408572

T. Deneux and O. Faugeras, Using nonlinear models in fMRI data analysis: Model selection and activation detection, NeuroImage, vol.32, issue.4, pp.1669-1689, 2006.
DOI : 10.1016/j.neuroimage.2006.03.006

N. Coquery, O. Francois, B. Lemasson, C. Debacker, R. Farion et al., Microvascular MRI and Unsupervised Clustering Yields Histology-Resembling Images in Two Rat Models of Glioma, Journal of Cerebral Blood Flow & Metabolism, vol.21, issue.8, pp.1354-1362, 2014.
DOI : 10.1371/journal.pone.0023789

URL : https://hal.archives-ouvertes.fr/hal-01462268

J. Derrac, S. García, D. Molina, and F. Herrera, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation, vol.1, issue.1, pp.3-18, 2011.
DOI : 10.1016/j.swevo.2011.02.002

A. L. Vazquez, E. R. Cohen, V. Gulani, L. Hernandez-garcia, Y. Zheng et al., Vascular dynamics and BOLD fMRI: CBF level effects and analysis considerations, NeuroImage, vol.32, issue.4, pp.1642-1655, 2006.
DOI : 10.1016/j.neuroimage.2006.04.195

. Ozaki, Model driven EEG/fMRI fusion of brain oscillations, Human Brain Map, vol.30, issue.9, pp.2701-2721, 2009.

M. Havlicek, A. Roebroeck, K. Friston, A. Gardumi, D. Ivanov et al., Physiologically informed dynamic causal modeling of fMRI data, NeuroImage, vol.122, pp.355-372, 2015.
DOI : 10.1016/j.neuroimage.2015.07.078

B. Sengupta, K. J. Friston, and W. D. Penny, Gradient-free MCMC methods for dynamic causal modelling, NeuroImage, vol.112, pp.375-381, 2015.
DOI : 10.1016/j.neuroimage.2015.03.008

B. Sengupta, K. J. Friston, and W. D. Penny, Gradient-based MCMC samplers for dynamic causal modelling, NeuroImage, vol.125, 2015.
DOI : 10.1016/j.neuroimage.2015.07.043

D. Baron, S. Sarvotham, and R. Baraniuk, Bayesian Compressive Sensing Via Belief Propagation, IEEE Transactions on Signal Processing, vol.58, issue.1, pp.269-280, 2010.
DOI : 10.1109/TSP.2009.2027773

G. Roberts and O. Stramer, Langevin diffusions and Metropolis-Hastings algorithms, Methodology and Computing in Applied Probability, vol.4, issue.4, pp.337-357, 2002.
DOI : 10.1023/A:1023562417138