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Abstract. Physiological and biophysical models have been proposed to link neu-
ral activity to the Blood Oxygen Level-Dependent (BOLD) signal in functional
MRI (fMRI). They rely on a set of parameter values that cannot always be ex-
tracted from the literature. Their estimation is challenging because there are more
than 10 potentially interesting parameters involved in non-linear equations and
whose interactions may result in identifiability issues. However, the availability
of statistical prior knowledge on these parameters can greatly simplify the esti-
mation task. In this work we focus on the extended Balloon model and propose
the estimation of 15 parameters using an Evolutionary Computation (EC) global
search method. To combine both the ability to escape local optima and to in-
corporate prior knowledge, we derive the EC objective function from Bayesian
modeling. This novel method provides promising results on a challenging real
fMRI data set involving rats with epileptic activity and compares favorably with
the conventional Expectation Maximization Gauss-Newton approach.

Keywords: functional MRI, BOLD signal, Biophysical parameters, Evolution-
ary Computation, Differential Evolution, Expectation Maximization.

1 Introduction

In the past decade, physiological models have been proposed to describe the processes
that link the neural and the hemodynamic activity in the brain. Different variations of
the widely used “Balloon model”[2] have been introduced that provide a complete de-
scription of the physiological processes underlying hemodynamic activity, from neural
activation to the Blood-Oxygen-Level-Dependent (BOLD) effect measurement [1,10].
These models all depend on physiological parameters for which different competing
values have been proposed in the literature, e.g. [10,11]. Most approaches that focus on
such models currently use one of these empirical sets of values with no real justification,
e.g. [8,14], although it has been shown in [8], and to a lesser extent in [14], that the selec-
tion of these parameters had a more critical impact than the choice of the Balloon model
variant itself, via their influence on the system dynamics. Estimating these physiolog-
ical parameters from observed data may therefore be of interest in a number of fMRI
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studies. A general method for estimating parameters involved in a dynamic system has
been proposed [9] based on a Bayesian approach which allows the incorporation of prior
knowledge. Such a priori knowledge is typically summarized by a Gaussian distribution
for each physiological parameter and provides a generally accepted consensus avoiding
the commitment to arbitrarily fixed values. The method in [9] has then been widely
used as the method of reference to estimate the hemodynamic response in dynamical
causal modelling (DCM). It is based on an Expectation-Maximization Gauss-Newton
search (EM/GN) which requires the linearization of the original system and approxima-
tion such as the Laplace approximation for tractability. The EM algorithm is also more
generally known to be sensitive to initialization and prone to get stuck in local optima.
Alternative approaches include sampling, e.g. Monte Carlo Markov Chain (MCMC),
or other stochastic techniques, e.g. Metaheuristics (MHs). Sampling techniques offer
a number of attractive features such as robust and reliable performance and ability to
escape local optima. MHs are in addition general purpose procedures that do not even
require the availability of the objective function in analytic form. In the DCM context,
the need for the Laplace approximation is relaxed by [3] which uses a MCMC imple-
mentation of the Bayesian inversion scheme of [9] and shows that the Laplace approx-
imation actually yields sensible inferences under a large set of conditions. However,
MCMC needs thousands of iterations to converge, constraints are not easy to introduce
and it does not provide mechanisms to control the trade-off exploration-exploitation.
Also, [3] focuses on DCM and neuronal parameter estimation while nothing is reported
on the impact on the non-neuronal physiological parameters. In contrast, in [16] the au-
thors consider the Balloon model in a non-Bayesian setting using standard MHs with an
objective, or so-called fitness function which does not include prior information. With-
out such valuable prior knowledge, it is quite challenging to put all parameters into the
proposed optimization scheme due to potential identifiability issues. It results that the
approach in [16] is limited to the estimation of three of the physiological parameters
out of the 15 considered in this paper.

In this work, our goal is to combine both the benefits from a Bayesian approach
which allows incorporation of prior knowledge and from MHs which are general-
purpose global optimization techniques able to avoid local optima. Following the Ba-
yesian inversion scheme of [9], we derive a fitness function that is directly comparable
to EM/GN search DCM standard. It follows an estimation procedure able to estimate all
physiological parameters of interest while being less likely to get trapped in local min-
ima. This novel method is assessed on a challenging real EEG/fMRI data set involving
rats with epileptic activity. A qualitative comparison with the EM/GN approach shows
the ability of our method to provide more physiologically sensible parameter values.

2 The extended Balloon model

The Balloon model was first proposed in [2] to link neuronal and vascular processes by
considering the venous vascular compartment as a balloon that inflates under the effect
of blood flow variations. More specifically, the model describes how, after some stimu-
lation, the local blood flow fin(t) increases and leads to the subsequent augmentation of
the local deoxygenated blood volume v(t). The incoming blood is strongly oxygenated,
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and since the relative blood flow increase exceeds the increase in oxygen consumption,
local deoxyhemoglobin concentration q(t) decreases and induces a BOLD signal in-
crease. The Balloon model was subsequently extended [10] to include the effect of the
neuronal activity on the variation of some auto-regulated flow inducing signal s(t) so
as to eventually link neuronal to hemodynamic activity. Variable ne(t) represents the
activity of the excitatory neuron population and ni(t) the inhibitory neuron population
[12]. The experimentally controlled input function (stimulus) is represented by u(t).
In the following, the explicit time dependence ‘(t)’ of the state variables will be omit-
ted for compactness. The global physiological model corresponds then to a non-linear
system with six state variables x = {ne, ni, s, fin, v, q} related to the excitatory and
inhibitory neuronal activity, normalized flow inducing signal, local blood flow, local
deoxygenated blood volume, and deoxyhemoglobin concentration. Their interactions
over time are described by the following non-linear differential equations:
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From these state variables, the observed BOLD signal y is derived using an observation
equation that includes intra- and extravascular BOLD signal components [1]:

y = V0

[
k1 (1− q) + k2

(
1− q

v

)
+ k3 (1− v)

]
(2)

where k1, k2, k3 are physiology- and scanner-dependent constants k1 = 4.3 θ0E0TE,
k2 = ε r0E0 TE and k3 = 1− ε.

The value θ0 is the frequency offset at the outer surface of the magnetized vessel
for fully deoxygenated blood, it is equal to 40.3 Hz · b0/1.5 T, where b0 is the magnetic
field strength. TE is the echo time and r0 is the slope of the relation between the
intravascular relaxation rate and oxygen saturation, which is set to 300 Hz [13]. E0 is
the oxygen extraction fraction at rest and is considered as a free parameter as well as ε,
the ratio of intra to extravascular signal.

The remaining parameters are the following: A, B, C, D and E are parameters as
in non-linear Dynamic Causal Models [15], D = (D1, D2, D3)T being the new com-
ponent in the non-linear state equation above. Parameter se is the spike exponent intro-
duced for the present dataset to control the scaling of the synaptic activity with respect
to the spike amplitude derived from local field potentials (LFPs), sd is the vasodilatory
signal decay, ar is the rate constant for autoregulatory feedback by blood flow, and tt
represents the transit time of blood from the arteriolar to the venous compartment. The
Grubb’s vessel stiffness exponent corresponds to α, while V0 is the resting venous cere-
bral blood volume fraction. The whole model depends on 15 different scalar parameters
to optimize θ = {A,B,C,D, E, se, sd, ar, tt, α,E0, V0, ε}.



4 Mesejo et al.

3 Bayesian estimation of dynamical systems

MHs require the definition of a fitness function to measure the goodness of the parame-
ters found. We use the Bayesian inversion scheme of [9] to derive an appropriate fitness
function. In the Balloon model, the first part describes the transitional dynamics of the
state vector x = {ne, ni, s, fin, v, q}. The system is defined as dx

dt = f(x,u,ψ), with
ψ = {A,B,C,D, E, se, sd, ar, tt, α,E0}. The second part of the model is the obser-
vational equation for the BOLD signal y which is assumed to be observed with some ad-
ditive Gaussian noise (in this context of BOLD data sampled at discrete time points, we
represent both data and state variables as vectors of discrete samples), y = g(x,φ)+η ,
with φ = {V0, E0, ε} and η is a random error vector distributed according to the
Gaussian distribution N (0, σ2

ηI) assuming unstructured noise. Under additional distri-
butional assumptions about the model parameters θ = {ψ,φ} and noise variance σ2

η ,
we can apply Bayesian inference. In [9], Gaussian priors are chosen for all parameters.
As explained in [14] for ε, it is more natural to use log-normal priors for parameters
that are positive. A simple way to account for positivity while remaining in a Gaus-
sian setting is to change the model parameterization. We consider equivalently θ̃ =
{Ã, B̃, C̃, D̃, Ẽ, s̃e, s̃d, ãr, t̃t, α̃, Ẽ0, Ṽ0, ε̃}, where {Ã, B̃, C̃, D̃} = {A,B,C,D} re-
main unchanged while the other parameters take the form θ̃ = log(θ/µθ) where the
specific µθ values may depend on the experiment (see section 5). An exception is E0

for which we setE0 = arctan(Ẽ0+tan(π(µE0
−0.5)))/π+0.5 in order to ensureE0 ∈

[0, 1]. Gaussian priors can then be assumed for θ̃ and the state and observational equa-
tions above lead to, y = h(θ̃,u) + η ,with η ∼ N (0, σ2

ηI), θ̃ ∼ N (θ̄,Σθ̃) and σ2
η ∼

p(σ2
η) . As another difference with [9,14], we use a semi-conjugate prior for the un-

known parameters (θ̃, σ2
η) in which θ̃ ∼ N (θ̄,Σθ̃) independently of σ2

η and a non-
informative prior is used for σ2

η , i.e. p(σ2
η) ∝ (σ2

η)−1. Bayesian inference is then based
on the posterior distribution p(θ̃, σ2

η|y) ∝ p(y|θ̃, σ2
η) p(θ̃) p(σ2

η) whose mode provides
the maximum a posteriori (MAP) estimate:

(θ̃, σ2
η)MAP = arg max

θ̃,σ2
η

{log p(y|θ̃, σ2
η) + log p(θ̃) + log p(σ2

η)} (3)

= arg min
θ̃,σ2

η

{(N + 2) log σ2
η +
||y − h(θ̃,u)||2

σ2
η

+ (θ̃ − θ̄)TΣ−1
θ̃

(θ̃ − θ̄)} .

where N is the y signal length. Setting to zero the gradient with respect to σ2
η yields

(σ2
η)MAP = ||y−h(θ̃MAP ,u)||2

N+2 . Plugin in (σ2
η)MAP into expression (3) leads to

θ̃MAP = arg min
θ̃
{(N + 2) log ||y − h(θ̃,u)||2 + (θ̃ − θ̄)TΣ−1

θ̃
(θ̃ − θ̄)} . (4)

The left-hand side above corresponds to our fitness function to be used in the EC frame-
work described in the next section. In contrast to the conventional Laplace approxima-
tion and EM estimation algorithm, EC does not require the linearization or approxi-
mation of h(θ̃,u). It does not require an analytic form of the likelihood and h(θ̃,u)
can typically be used as a numerical function. Another advantage of EC is its flexibility
in particular as regards hard constraints often imposed for stability of the differential
equations (1). The hyperparameters θ̄ andΣθ are specified in section 5.
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4 Evolutionary Computation

Evolutionary Computation (EC) methods are population-based MH algorithms [7]. They
include several computational models that reproduce natural evolution processes to
reach a target which is generally represented as a fitness function to optimize. In prac-
tice, they implement an iterative process (artificial evolution) in which solutions im-
prove over generations until they converge to an optimum, starting from an initial pool
of randomly generated solutions. EC procedures are based on achieving a trade-off
between intensification (exploitation of the best solutions, usually through selection op-
erators and replacement strategies) and diversification (exploration of the search space
thanks to crossover and mutation operators).

In this work, we choose to use Differential Evolution (DE) [5], which has recently
been shown to be one of the most successful EC methods for global continuous opti-
mization. DE perturbs individuals in the current generation by the scaled differences of
other randomly selected and distinct individuals. In DE, each individual acts as a parent
vector, and for each of them a new solution, called donor vector, is created. In the basic
version of DE, the donor vector for the ith parent (θ̃i) is generated by combining three
random and distinct elements θ̃r1, θ̃r2 and θ̃r3. The donor vector Vi is computed as
Vi = θ̃r1 + F · (θ̃r2 − θ̃r3), where F (scale factor) is a parameter that strongly influ-
ences DE’s performance and typically lies in the interval [0.4, 1]. The original method
described above is called DE/rand/1, which means that the first element of the donor
vector equation θ̃r1 is randomly chosen and only one difference vector (in this case
θ̃r2 − θ̃r3) is added. After mutation, every parent-donor pair generates a child (called
trial vector) by means of a crossover operation. The crossover is applied with a certain
probability, defined by a parameter Cr (crossover rate) that, like F , is one of the control
parameters of DE. Then, the trial vector is evaluated and its fitness is compared to the
parent’s. The best, in terms of fitness, survives and will be part of the next generation.

5 Experimental results

The BOLD data used in the experiments was recorded with the goal of testing biophys-
ical models in the context of epileptic activity in rats. An intracortical silica capillary
was surgically implanted in the right primary somatosensory cortex of male Wistar rats
(∼400 g) and subdural carbon EEG electrodes were placed close to the injection site
and over the cerebellum. Epileptic activity was elicited using bicuculline methochloride
(2.5 mM, 1 µl/5 min) injected intra-cortically during the MRI session. Simultaneous
EEG and BOLD-fMRI data were acquired under <2% isoflurane anesthesia.

The EEG/fMRI data were acquired on a 4.7 T Advance III Bruker Biospec.In each
scan, 300 volumes of five slices (0.25×0.25×0.8 mm3 voxel size) were acquired using
single-shot GE EPI with TE/TR of 20/600 ms. A total of 3-12 scans were performed
for each of 12 rats (27 min of EEG/fMRI data per animal on average). The data from
3 animals were unexploitable and thus excluded from the analysis. Epileptic discharges
(EDs) were automatically identified from the EEG data and ED amplitudes and onsets
were recorded. For each rat, a single average fMRI signal concatenating all scans was
extracted from the largest cluster of significantly active voxels identified in a linear
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analysis with a FIR hemodynamic response model. The fMRI signal size N ranged
from 894 to 3576 with a median value of 2684. The EDs were entered in the biophysical
model via the input function u as a series of short (8 ms) events.

To palliate the absence of ground truth (GT) in real data, a synthetic dataset is cre-
ated to study the methods behavior under controlled conditions. Rat 5, whose physio-
logical conditions are amongst the most stable ones, is selected as a reference to create
this dataset, and the parameter estimates found by EM/GN are defined as the GT. BOLD
signals are generated from either a full set of measured spikes or a subset (25%) to sim-
ulate more sparse events, adding AR(1) noise with three target SNRs (0.10, 0.46 and
2.15). The average distance to GT using 25% subsampling and the full set of spikes are
0.56 and 2.8 in EM/GN, and 0.28 ± 0.09 and 0.15 ± 0.01 in DE, respectively.

Then, for each rat, physiological parameters θ are estimated using DE with fit-
ness function (4) and transforming back the resulting θ̃ into θ. Each of the positive
parameters in θ̃ is specified using θ̃ = log(θ/µθ) with µθ defined respectively by
{µE , µse, . . . , µε} = {1, 1, 0.64, 0.41, 0.98, 0.32, 0.55, 0.4, 1} [6]. The prior means are
then set to θ̄ = 0 and the prior covarianceΣθ̃ is a diagonal matrix containing the prior
variances set to {0.25, 0.25, 54.6, 0.05, 0.05, 0.05, 0.05, 0.14, 0.14, 0.05, 0.05, 0.007,
0.007, 0.05, 0.14} for each parameter in θ̃. The DE parameters used are among the most
common ones in the state of the art [5]: F = 0.85, Cr = 1, with a DE/local-to-best/1
strategy that attempts a balance between robustness and fast convergence, and a pop-
ulation size of 150. The EM/GN algorithm [9] starts from physiologically reasonable
parameter values (the prior means), which facilitates its convergence to a good solution.
Since DE is a stochastic approach several runs need to be executed to evaluate its aver-
age performance. In this study, the number of runs per rat and the number of iterations
per run are empirically set to 15 and 300, respectively. DE shows a very stable behavior
with a standard deviation of the mean fitness values between 0.001% and 0.042%.

The θ parameter estimations from DE and EM/GN are shown in Table 1 . The ex-
perimental conditions for all animals were controlled as closely as possible. It is there-
fore expected that the physiologically meaningful parameters show limited variability
across animals. However, the parameters related to the scaling of the stimulus and the
neuronal signals (notably, A, B, C,D, E and se) may vary significantly, since the am-
plitudes of the elicited EEG responses varied between sessions. Estimates for 4 of the
parameters that are expected to be among the most stable ones are shown in Figure 1.
The ratio between intra- and extravascular signals, ε, depends on field strength, blood
T2, and vascular geometry, but little on physiology. The values estimated by DE are
markedly more stable between animals than the values obtained with EM/GN. Quan-
titatively, both methods yield plausible results. Blood transit times from arterioles to
the deoxygenated vascular compartment estimated with DE are generally longer, and
closer to the expected value, than those obtained with EM/GN, which are rather too
short. For comparison, mean transit times across the entire vascular tree in a cortical
voxel observed using DSC MRI in anesthesized rats are on the order of 1.6 s [4]. In-
versely, resting venous blood volumes estimated with DE are lower than those obtained
with EM/GN. The prior estimate used here for this parameter, 4%, corresponds to the
total cortical resting blood volume in isoflurane anesthesized male Wistar rats [4]. In
hindsight, the value that should actually be considered in the model is however only the



Estimating biophysical parameters via evolutionary-based optimization 7

A B C D1 D2 D3 E se sd ar tt α V0 E0 ε

RAT1 DE 0.56 0.02 0.10 0.01 0.02 0.05 0.84 1.44 0.89 0.53 0.83 0.32 0.38 0.55 0.90
EM/GN 0.14 -0.01 0.02 0.01 0.01 0.01 0.86 1.11 0.61 0.44 0.65 0.31 0.53 0.55 1.77

RAT2 DE 0.48 0.03 3.00 -0.14 -0.10 0.46 0.73 0.40 2.02 0.25 0.91 0.35 0.20 0.53 0.35
EM/GN 0.03 -0.00 0.02 0.01 0.01 0.01 0.96 0.60 0.73 0.36 0.44 0.30 0.58 0.54 2.13

RAT3 DE -0.66 -0.01 3.00 -0.14 -0.09 0.58 0.73 0.96 1.00 0.26 0.85 0.33 0.15 0.52 0.42
EM/GN 1.35 0.02 0.26 0.07 -0.01 0.18 0.72 0.83 1.12 0.59 0.65 0.32 0.34 0.54 0.94

RAT4 DE -0.14 0.01 2.18 0.31 -0.43 0.05 0.40 0.50 1.95 0.36 0.72 0.33 0.15 0.54 0.41
EM/GN -0.14 0.01 2.10 0.33 -0.42 0.07 0.41 0.50 1.86 0.35 0.71 0.33 0.16 0.54 0.41

RAT5 DE 1.11 0.03 1.60 -0.08 -0.11 0.17 0.57 0.82 2.05 0.46 0.67 0.35 0.23 0.54 0.36
EM/GN 1.07 0.03 1.21 -0.09 -0.12 0.19 0.56 0.78 2.07 0.46 0.65 0.34 0.26 0.55 0.39

RAT6 DE -0.85 0.01 3.00 0.23 0.24 0.18 0.44 0.33 1.15 0.25 0.97 0.33 0.22 0.52 0.49
EM/GN 0.21 -0.01 0.03 0.03 0.04 0.03 0.71 1.13 1.04 0.39 0.38 0.30 0.62 0.55 2.38

RAT7 DE 1.75 -0.03 0.09 -0.00 0.00 0.01 0.65 1.23 1.30 0.47 0.65 0.32 0.40 0.55 1.16
EM/GN 1.70 -0.03 0.07 -0.00 0.00 0.01 0.65 1.23 1.25 0.47 0.64 0.31 0.42 0.55 1.30

RAT8 DE 0.10 0.07 2.99 -0.43 -0.47 -0.02 0.39 0.19 1.92 0.14 0.60 0.31 0.22 0.53 0.49
EM/GN -0.67 0.08 0.30 -0.08 -0.10 0.11 0.50 0.14 1.40 0.57 0.51 0.31 0.32 0.54 1.14

RAT9 DE 0.74 0.03 0.55 0.02 -0.01 0.06 0.45 0.68 2.74 0.38 0.58 0.32 0.36 0.55 0.60
EM/GN 0.74 0.03 0.52 0.01 -0.01 0.07 0.45 0.68 2.71 0.38 0.57 0.32 0.37 0.55 0.62

Table 1. EM estimates and DE medians for each of the 9 rats and each parameter in θ.

Fig. 1. Boxplots of the DE runs and EM/GN results (green line) for ε, transit time (tt), V0 and
E0. The parameter prior mean (resp. standard deviation) is indicated by the red (resp. blue) line.

venous (deoxygenated) fraction of that, such that a value of 2% actually seems much
more realistic than the higher values of up to 6% estimated using EM/GN. Finally, both
methods yield similar values for the resting oxygen extraction fraction. In summary, the
estimates obtained from DE for these values seem both more realistic and more stable
or at least as stable across sessions as the estimates from EM/GN.
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6 Conclusion and future work

A novel method to infer physiological parameters from observed BOLD signals has
been described, showing the robustness and flexibility of global search optimization
methods while being able to incorporate prior information in a principled Bayesian
way. This has not been proposed before and could have a strong impact on a number of
fMRI studies. Traditionally, these parameters are manually set or, only few of them, are
determined by using conventional but potentially suboptimal local search methods like
EM. Preliminary results on synthetic and real data showed promising results providing
sensible and more stable parameter estimates. Possible future research includes test-
ing on multimodal fMRI data, since information from cerebral blood flow and volume
dynamics may help to further improve the reliability of the parameter estimates.
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