R. B. Buxton, K. Uluda?-g, D. J. Dubowitz, and T. T. Liu, Modeling the hemodynamic response to brain activation, NeuroImage, vol.23, pp.220-233, 2004.
DOI : 10.1016/j.neuroimage.2004.07.013

R. B. Buxton, E. C. Wong, and L. R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: The balloon model, Magnetic Resonance in Medicine, vol.77, issue.6, pp.855-864, 1998.
DOI : 10.1002/mrm.1910390602

J. R. Chumbley, K. J. Friston, T. Fearn, and S. J. Kiebel, A Metropolis???Hastings algorithm for dynamic causal models, NeuroImage, vol.38, issue.3, pp.478-487, 2007.
DOI : 10.1016/j.neuroimage.2007.07.028

N. Coquery, O. Francois, B. Lemasson, C. Debacker, R. Farion et al., Microvascular MRI and Unsupervised Clustering Yields Histology-Resembling Images in Two Rat Models of Glioma, Journal of Cerebral Blood Flow & Metabolism, vol.21, issue.8, pp.1354-1362, 2014.
DOI : 10.1371/journal.pone.0023789

URL : https://hal.archives-ouvertes.fr/hal-01462268

S. Das and P. Suganthan, Differential Evolution: A Survey of the State-of-the-Art, IEEE Transactions on Evolutionary Computation, vol.15, issue.1, pp.4-31, 2011.
DOI : 10.1109/TEVC.2010.2059031

O. David, I. Guillemain, S. Saillet, S. Reyt, C. Deransart et al., Identifying Neural Drivers with Functional MRI: An Electrophysiological Validation, PLoS Biology, vol.54, issue.12, pp.2683-2697, 2008.
DOI : 10.1371/journal.pbio.0060315.sd002

URL : https://hal.archives-ouvertes.fr/inserm-00356680

A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing, 2003.

A. Frau-pascual, P. Ciuciu, and F. Forbes, Physiological models comparison for the analysis of ASL FMRI data, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015.
DOI : 10.1109/ISBI.2015.7164125

URL : https://hal.archives-ouvertes.fr/hal-01249014

K. J. Friston, Bayesian Estimation of Dynamical Systems: An Application to fMRI, NeuroImage, vol.16, issue.2, pp.513-530, 2002.
DOI : 10.1006/nimg.2001.1044

K. J. Friston, A. Mechelli, R. Turner, and C. J. Price, Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage, vol.12, issue.4, pp.466-477, 2000.
DOI : 10.1006/nimg.2000.0630

I. Khalidov, J. Fadili, F. Lazeyras, D. Van-de-ville, and M. Unser, Activelets: Wavelets for sparse representation of hemodynamic responses, Signal Processing, vol.91, issue.12, pp.2810-2821, 2011.
DOI : 10.1016/j.sigpro.2011.03.008

A. Marreiros, S. Kiebel, and K. Friston, Dynamic causal modelling for fMRI: A two-state model, NeuroImage, vol.39, issue.1, pp.269-278, 2008.
DOI : 10.1016/j.neuroimage.2007.08.019

M. Silvennoinen, C. Clingman, X. Golay, R. Kauppinen, and P. Van-zijl, Comparison of the dependence of bloodR2 andR2* on oxygen saturation at 1.5 and 4.7 Tesla, Magnetic Resonance in Medicine, vol.43, issue.1, pp.47-60, 2003.
DOI : 10.1002/mrm.10355

K. E. Stephan, N. Weiskopf, P. M. Drysdale, P. A. Robinson, and K. J. Friston, Comparing hemodynamic models with DCM, NeuroImage, vol.38, issue.3, pp.387-401, 2007.
DOI : 10.1016/j.neuroimage.2007.07.040

URL : http://doi.org/10.1016/j.neuroimage.2007.07.040

K. Stephan, L. Kasper, L. Harrison, J. Daunizeau, H. Den-ouden et al., Nonlinear dynamic causal models for fMRI, NeuroImage, vol.42, issue.2, pp.649-662, 2008.
DOI : 10.1016/j.neuroimage.2008.04.262

V. A. Vakorin, O. O. Krakovska, R. Borowsky, and G. E. Sarty, Inferring neural activity from BOLD signals through nonlinear optimization, NeuroImage, vol.38, issue.2, pp.248-260, 2007.
DOI : 10.1016/j.neuroimage.2007.06.033