An Analysis of Errors in Graph-Based Keypoint Matching and Proposed Solutions

Abstract : An error occurs in graph-based keypoint matching when key-points in two different images are matched by an algorithm but do not correspond to the same physical point. Most previous methods acquire keypoints in a black-box manner, and focus on developing better algorithms to match the provided points. However to study the complete performance of a matching system one has to study errors through the whole matching pipeline, from keypoint detection, candidate selection to graph optimisation. We show that in the full pipeline there are six different types of errors that cause mismatches. We then present a matching framework designed to reduce these errors. We achieve this by adapting keypoint detectors to better suit the needs of graph-based matching, and achieve better graph constraints by exploiting more information from their keypoints. Our framework is applicable in general images and can handle clutter and motion discontinuities. We also propose a method to identify many mismatches a posteriori based on Left-Right Consistency inspired by stereo matching due to the asymmetric way we detect keypoints and define the graph.
Type de document :
Communication dans un congrès
13th European Conference on Computer Vision (ECCV’14), Sep 2014, Zurich, Switzerland. 8695, pp.138-153, 2014, Computer Vision – ECCV 2014. 〈10.1007/978-3-319-10584-0_10〉
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01221328
Contributeur : Pablo Mesejo Santiago <>
Soumis le : mardi 27 octobre 2015 - 17:30:31
Dernière modification le : jeudi 11 janvier 2018 - 06:23:32
Document(s) archivé(s) le : jeudi 28 janvier 2016 - 11:21:20

Fichier

proof.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Toby Collins, Pablo Mesejo, Adrien Bartoli. An Analysis of Errors in Graph-Based Keypoint Matching and Proposed Solutions. 13th European Conference on Computer Vision (ECCV’14), Sep 2014, Zurich, Switzerland. 8695, pp.138-153, 2014, Computer Vision – ECCV 2014. 〈10.1007/978-3-319-10584-0_10〉. 〈hal-01221328〉

Partager

Métriques

Consultations de la notice

321

Téléchargements de fichiers

192