Automatic evolutionary medical image segmentation using deformable models

Abstract : This paper describes a hybrid level set approach to medical image segmentation. The method combines region-and edge-based information with the prior shape knowledge introduced using deformable registration. A parameter tuning mechanism, based on Genetic Algorithms, provides the ability to automatically adapt the level set to different segmentation tasks. Provided with a set of examples, the GA learns the correct weights for each image feature used in the segmentation. The algorithm has been tested over four different medical datasets across three image modalities. Our approach has shown significantly more accurate results in comparison with six state-of-the-art segmentation methods. The contributions of both the image registration and the parameter learning steps to the overall performance of the method have also been analyzed.
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01221343
Contributeur : Pablo Mesejo Santiago <>
Soumis le : mardi 27 octobre 2015 - 18:09:29
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : vendredi 28 avril 2017 - 05:36:17

Fichier

paperFinal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Andrea Valsecchi, Pablo Mesejo, Linda Marrakchi-Kacem, Stefano Cagnoni, Sergio Damas. Automatic evolutionary medical image segmentation using deformable models. 16th IEEE Congress on Evolutionary Computation (CEC’14), Jul 2014, Beijing, China. pp.97-104, 2014, 〈10.1109/CEC.2014.6900466〉. 〈hal-01221343〉

Partager

Métriques

Consultations de la notice

308

Téléchargements de fichiers

144