Texture Classification of Proteins Using Support Vector Machines and Bio-inspired Metaheuristics

Abstract : In this paper, a novel classification method of two-dimensional poly-acrylamide gel electrophoresis images is presented. Such a method uses textural features obtained by means of a feature selection process for whose implementation we compare Genetic Algorithms and Particle Swarm Optimization. Then, the selected features, among which the most decisive and representative ones appear to be those related to the second order co-occurrence matrix, are used as inputs for a Support Vector Machine. The accuracy of the proposed method is around 94%, a statistically better performance than the classification based on the entire feature set. This classification step can be very useful for discarding over-segmented areas after a protein segmentation or identification process.
Type de document :
Chapitre d'ouvrage
Biomedical Engineering Systems and Technologies, 452, pp.117-130, 2014, 978-3-662-44485-6. 〈10.1007/978-3-662-44485-6_9〉
Liste complète des métadonnées

Littérature citée [53 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01221496
Contributeur : Pablo Mesejo Santiago <>
Soumis le : jeudi 29 octobre 2015 - 20:44:07
Dernière modification le : vendredi 30 octobre 2015 - 09:43:30
Document(s) archivé(s) le : vendredi 28 avril 2017 - 06:35:50

Fichier

final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Carlos Fernandez-Lozano, Jose A. Seoane, Pablo Mesejo, Youssef S.G. Nashed, Stefano Cagnoni, et al.. Texture Classification of Proteins Using Support Vector Machines and Bio-inspired Metaheuristics. Biomedical Engineering Systems and Technologies, 452, pp.117-130, 2014, 978-3-662-44485-6. 〈10.1007/978-3-662-44485-6_9〉. 〈hal-01221496〉

Partager

Métriques

Consultations de la notice

23

Téléchargements de fichiers

132