Segmentation of histological images using a metaheuristic-based level set approach

Abstract : This paper presents a two-phase method to segment the hippocampus in histological images. The first phase represents a training stage where, from a training set of manually labelled images, the hippocampus representative shape and texture are derived. The second one, the proper segmentation, uses a metaheuristic to evolve the contour of a geometric deformable model using region and texture information. Three different metaheuristics (real-coded GA, Particle Swarm Optimization and Differential Evolution) and two classical segmentation algorithms (Chan & Vese model and Geodesic Active Contours) were compared over a test set of 10 histological images. The best results were attained by the real-coded GA, achieving an average and median Dice Coefficient of 0.72 and 0.77, respectively.
Type de document :
Communication dans un congrès
15th Genetic and Evolutionary Computation Conference companion (GECCO’13), Jul 2013, Amsterdam, Netherlands. pp.1455-1462, 2013, 〈10.1145/2464576.2466808〉
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01221602
Contributeur : Pablo Mesejo Santiago <>
Soumis le : mercredi 28 octobre 2015 - 11:55:08
Dernière modification le : jeudi 29 octobre 2015 - 01:08:55
Document(s) archivé(s) le : vendredi 29 janvier 2016 - 13:15:55

Fichier

MedGec_noCopyright.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Pablo Mesejo, Stefano Cagnoni, Alessandro Costalunga, Davide Valeriani. Segmentation of histological images using a metaheuristic-based level set approach. 15th Genetic and Evolutionary Computation Conference companion (GECCO’13), Jul 2013, Amsterdam, Netherlands. pp.1455-1462, 2013, 〈10.1145/2464576.2466808〉. 〈hal-01221602〉

Partager

Métriques

Consultations de la notice

65

Téléchargements de fichiers

97