Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach

Sébastien Benzekry 1, 2 A. Tracz 3 M. Mastri 3 R. Corbelli 3 D. Barbolosi 4 J. M. L. Ebos 5, 3
1 MONC - Modélisation Mathématique pour l'Oncologie
IMB - Institut de Mathématiques de Bordeaux, Inria Bordeaux - Sud-Ouest, Institut Bergonié - CRLCC Bordeaux
4 SMARTc
CRO2 - Centre de Recherches en Oncologie biologique et Oncopharmacologie
Abstract : Rapid improvements in the detection and tracking of early-stage tumor progression aim to guide decisions regarding cancer treatments as well as predict metastatic recurrence in patients following surgery. Mathematical models may have the potential to further assist in estimating metastatic risk, particularly when paired with in vivo tumor data that faithfully represent all stages of disease progression. Herein we describe mathematical analysis that uses data from mouse models of spontaneous metastasis developing after surgical removal of orthotopically implanted primary tumors. Both presurgical (primary tumor) and postsurgical (metastatic) growth was quantified using bioluminescence and was then used to generate a mathematical formalism based on general laws of the disease (i.e. dissemination and growth). The model was able to fit and predict pre-/post-surgical data at the level of the individual as well as the population. Our approach also enabled retrospective analysis of clinical data describing the probability of metastatic relapse as a function of primary tumor size. In these data-based models, inter-individual variability was quantified by a key parameter of intrinsic metastatic potential. Critically, our analysis identified a highly nonlinear relationship between primary tumor size and postsurgical survival, suggesting possible threshold limits for the utility of tumor size as a predictor of metastatic recurrence. These findings represent a novel use of clinically relevant models to assess the impact of surgery on metastatic potential and may guide optimal timing of treatments in neoadjuvant (presurgical) and adjuvant (postsurgical) settings to maximize patient benefit.
Type de document :
Article dans une revue
Cancer Research, American Association for Cancer Research, 2016, 76 (3), pp.535 - 547. 〈10.1158/0008-5472.CAN-15-1389〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01222046
Contributeur : Sebastien Benzekry <>
Soumis le : vendredi 30 octobre 2015 - 12:15:29
Dernière modification le : lundi 29 janvier 2018 - 17:30:06
Document(s) archivé(s) le : vendredi 5 mai 2017 - 11:27:41

Fichier

benzekryEbos_surgery_all_HAL.p...
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Sébastien Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi, et al.. Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico Approach. Cancer Research, American Association for Cancer Research, 2016, 76 (3), pp.535 - 547. 〈10.1158/0008-5472.CAN-15-1389〉. 〈hal-01222046v2〉

Partager

Métriques

Consultations de la notice

429

Téléchargements de fichiers

338